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Abstract: The measurement and quantification of glucose concentrations is a field of major interest,
whether motivated by potential clinical applications or as a prime example of biosensing in basic
research. In recent years, optical sensing methods have emerged as promising glucose measurement
techniques in the literature, with surface-enhanced infrared absorption (SEIRA) spectroscopy com-
bining the sensitivity of plasmonic systems and the specificity of standard infrared spectroscopy.
The challenge addressed in this paper is to determine the best method to estimate the glucose con-
centration in aqueous solutions in the presence of fructose from the measured reflectance spectra.
This is referred to as the inverse problem of sensing and usually solved via linear regression. Here,
instead, several advanced machine learning regression algorithms are proposed and compared, while
the sensor data are subject to a pre-processing routine aiming to isolate key patterns from which to
extract the relevant information. The most accurate and reliable predictions were finally made by
a Gaussian process regression model which improves by more than 60% on previous approaches.
Our findings give insight into the applicability of machine learning methods of regression for sensor
calibration and explore the limitations of SEIRA glucose sensing.

Keywords: glucose sensing; surface-enhanced infrared absorption spectroscopy; sensor calibration;
machine learning; regression analysis; artificial neural network; Gaussian process regression

1. Introduction

The reliable detection and identification of specific biomolecules in complex environ-
ments have been a long-standing problem in life sciences and promise a variety of potential
applications in food process control, environmental monitoring, and health care [1]. The
main challenge thereby is that in real world scenarios not only are analyte concentrations
very small, but their detection is further disturbed by the extremely large number of addi-
tional molecular specimens in the sample. A high sensitivity and selectivity are therefore
paramount for any biosensing measurement system. Naturally, this has motivated a num-
ber of scientific publications exploring different approaches to the matter. In recent years,
the determination of glucose concentrations has been of particular interest. This is—in
part—motivated by a potential medical application in the treatment of diabetes mellitus,
a disease that requires the constant control of a patient’s blood sugar levels [2–4]. Given
that continuous glucose monitoring devices are approved and in use, research in this area
focuses on the development of non-invasive measuring techniques that carry a significantly
lower risk of infection [5,6]. On the other hand, however, the detection of glucose can
also be considered a case study in fundamental biosensor research. Here, the objective
is not necessarily the design of a commercial healthcare product, but the validation and
evaluation of an innovative method of measurement through an example application.
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Comprehensive reviews regarding the state of the art in the field of glucose sensing
have been published by [7–9]. Currently, considered approaches include enzyme-based
electrochemical biosensors [10], reverse iontophoresis methods [11], and microwave sens-
ing techniques [12], which exploit the correlation between the substrate’s electromagnetic
properties and its glucose content. For the latter, the incorporation of artificial so-called
“meta-materials” has recently been explored [13,14]. Furthermore, fluorescence-based sens-
ing systems receive much attention due to their extreme sensitivity and their potential
for non-invasiveness [15]. In short, they use molecules that absorb and re-emit radiation
energy proportional to the glucose concentration in the sample [16]. Another, equally
sensitive optical sensor concept exploits the localised surface plasmon, a collective os-
cillation of the conduction electrons on the surface of a metallic nanostructure which is
excited by incoming light. The plasmon’s resonance frequency is dependent not only on the
nanostructure’s geometry, but also on the surrounding refractive index, which, in return, is
shifted by biomolecular interactions at the surface [17,18]. While this method can be used to
detect even single molecules, it is highly complex to distinguish between different analytes.
Infrared spectroscopy, on the other hand, notably achieves supreme specificity. Determined
by their chemical structure, biomolecules exhibit characteristic vibrational modes, often
referred to as spectral fingerprints [19]. Hence, upon electromagnetic irradiation, these
specific frequencies are absorbed, which results in a unique spectral absorption pattern.
However, the detection of low specimen concentrations proves challenging for standard
infrared spectroscopy [20].

1.1. SEIRA Glucose Sensing

Surface-enhanced infrared absorption (SEIRA) spectroscopy combines the sensitivity
of plasmonic systems and the specificity of infrared spectroscopy [21]. It makes use of
the fact that at the plasmon’s resonance frequency electromagnetic near-fields are greatly
enhanced. Therefore, if the metallic nanostructure is designed such that its resonance
frequency matches the analyte’s molecular fingerprint, their modal coupling amplifies the
characteristic vibrational signal by several orders of magnitude, which, in return, enables
the detection of lower concentrations [22]. In fact, SEIRA spectroscopy has successfully
been applied by Kühner et al. [23] to detect glucose in the presence of fructose in aqueous
solutions. Such mixtures are widely used in research as exemplary systems since the pres-
ence of monosaccharides with similar physical properties hampers a precise determination
of the glucose concentration.

The employed SEIRA sensor setup is illustrated in Figure 1.
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Figure 1. Schematic overview of the SEIRA spectroscopy glucose sensing setup by Kühner et al. [23]:
on top, the irradiated reflective flow cell with gold nanoantennas containing an aqueous monosac-
charide solution; below, an abstracted plot of the measured spectrum and its principal component
decomposition.
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Incorporated into a reflective flow cell on top of a calcium fluoride (CaF2) wafer are
arrays of linear gold nanoantennas whose geometry was chosen such that their plasmonic
resonance coincides with the characteristic molecular modes of glucose and fructose. There-
fore, their enhanced vibrational fingerprint is encoded in the measured spectrum of the
reflected infrared beam, which is schematically depicted in the lower right. Here, the
blue curve represents the pure plasmonic resonance while the dips at the highlighted
spectral fingerprints are caused by the presence of monosaccharide molecules [24]. Gener-
ally speaking, the larger these dips, the higher the concentration. In order to extract this
critical pattern from the data and to quantify it, the authors perform a principle component
analysis (PCA) [25], which, as shown in the top right corner, reveals distinct clusters for
different concentrations of glucose and fructose in the aqueous solution. This does not
only confirm that these two monosaccharides indeed have unique spectral fingerprints
despite their similar chemical structure, but that SEIRA is specific enough to distinguish
between them.

1.2. SEIRA Glucose Sensing—Inverse Problem

The present paper directly advances the efforts of the publication cited above. The
overall challenge addressed here can be referred to as the inverse problem of sensing (also
referred to as sensor calibration), as schematically outlined in Figure 2.

cause

monosaccharide
concentrations

effect

measured
SEIRA spectrum

forward

inverse

Figure 2. Flow chart visualising the forward/inverse problem of sensing with SEIRA spectroscopy
of sugary solutions as an application example.

While Kühner et al. [23] studied the so-called forward mapping, that is, the influence
different parameter values have on the system’s output, the inverse problem, on the other
hand, deals with the prediction of the underlying physical properties based on some given
measurements. For the application scenario at hand, this implies the reliable reconstruction
of the precise glucose and fructose concentrations in aqueous solutions from the SEIRA
sensor data. A first solution for this was proposed by Schuler et al. [26]. Instead of a PCA,
the authors perform an asymmetric least squares smoothing (ALSS) baseline correction [27]
to remove the plasmonic background and isolate the pure vibrational spectrum with peaks
at the characteristic wavenumbers. Their heights directly correlate with their associated
monosaccharide concentrations. Subsequently, a superposition of quadratic basis functions
is optimised over both the glucose and fructose concentration to match the fingerprint
amplitudes. Eventually, negative results are set to zero and the average from 30 samples is
drawn to compute the final prediction. Note that this method has several drawbacks: First,
and foremost, taking only the relative reflectance at the precise fingerprint wavenumbers
into consideration neglects spectrum-shifting disturbances and thus compromises the
robustness of the prediction. On top of that, the ALSS-algorithm returns a different baseline
to be eliminated from the spectrum for each measurement which clearly restricts the
comparability. Additionally, removing a fitted Fano or Lorentzian shaped baseline instead
is also not an expedient solution since such a theoretic model deviates heavily from the
actual measurements. Finally, the authors assume the contribution of pure water to be
constant, which, however, is not the case. This is further elaborated on in Section 3.1.
Overall, Schuler et al. [26] propose an optimisation-based solution to the inverse problem.
However, since a functional dependence is to be determined or at least estimated, this
problem can also be approached via a regression analysis. Regression analysis is a statistical
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process where an unknown function mapping an independent input vector x ∈ Rp onto
the dependent output vector y(x) ∈ Rq is approximated by fitting a pre-defined model

f :Rp ×Rr → Rq (1)

as closely as possible to a given set of N observations

D =
{
(xi, yi)

∣∣ i = 1 . . . N
}

(2)

by minimising the norm of the model prediction error e = y− f (x, β) over the parameter
vector β ∈ Rr such that

y = f (x, β) + e. (3)

Once the model is optimised, it can be employed to estimate the system output for any
given input vector. Thereby, the determining factor for the quality of the prediction is the
underlying function f which can either be chosen based on a physical system model or as
a universal ansatz function. While the first approach reduces the regression to a parameter
identification, the latter belongs to the field of machine learning as it is purely data-driven
and treats the system as a black box.

1.3. Contribution

At the time of writing, to the authors’ best knowledge, there is no adequately accurate
mathematical replica of the SEIRA sensing process or sensor available. In addition, the ob-
tained measurement data exhibit a high variance, which overall suggests that model-based
approaches are unsuited to solve the inverse problem of SEIRA spectroscopy. Therefore,
within the scope of this paper, we propose several advanced supervised machine learning
algorithms for regression analysis to reliably predict the output vector

y =

[
cgluc
cfruc

]
∈ Rq=2 (4)

containing the concentrations of both glucose cgluc and fructose cfruc in aqueous solutions.
The contribution of this paper is twofold: Most importantly, we analyse and compare

the performance of the different machine learning methods in order to evaluate their appli-
cability in the field of sensor calibration. As this is fundamental research, we expect our
findings here to be generalisable and potentially transferable to other biosensing systems.
Moreover, we determine the limitations of the surface-enhanced infrared absorption spec-
troscopy measurement setup by Kühner et al. [23] from a signal processing perspective to
support the further development of the sensor.

This paper is structured as follows: First, we introduce the utilised regression algo-
rithms, covering both their theoretical backgrounds as well as their known applications and
advantages. Next, we delineate the experimental setup and present the measurement data,
as well as our pre-processing routine in detail. Finally, the different regression strategies are
implemented and their performance is showcased for solutions of varying monosaccharide
concentrations. This allows for a thorough evaluation and discussion.

2. Regression Methods in Machine Learning

In total, two different regression strategies are employed and compared. In this section,
both are presented in detail and their application is motivated.

2.1. Cascade-Forward Neural Network

Artificial neural networks (ANN) are powerful universal function approximators that
are loosely designed after the synapses in the human brain. As such, they are formed
by interconnected basic units of computation, referred to as neurons, which are usually
structured in layers. The first one, the input layer, is passed the independent data vector
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x ∈ Rp, whereas the last one, the output layer, returns the estimate for the dependent
variable y(x) ∈ Rq. Between them, there can be arbitrarily many so-called hidden layers.
In a fully connected feed-forward network, all neurons in one layer are connected to those
in the following one. These connections define input/output relations between the neurons
and are assigned a weight: A neuron’s scalar input is defined as the weighted sum over its
connected neurons’ outputs and a bias term. Accordingly, the input vector of the kth layer
is given by

W(k)z(k−1) + b(k), (5)

where z(k−1) denotes the output vector of the (k− 1)th layer, W(k) the matrix of weights
and b(k) the vector of biases. The layer’s output vector, in return, is computed by applying
a nonlinear activation function φ : R→ R element-wise to its input vector (5). Due to this
incorporated nonlinearity, a neural network with sufficiently many hidden neurons can be
fit arbitrarily accurately to any function (universal approximation theorem) by numerically
optimising the network’s weights and biases with respect to a given set of labelled mea-
surement data D. This process is referred to as training and usually accomplished via some
gradient-based algorithm, which is to avoid local minima and an overfitting of the network.
In short, artificial neural networks essentially are particularly structured ansatz functions
for regression analysis with an extremely high number of optimisation parameters [28].

A special class of ANNs are cascade-forward neural networks (CFNN), which feature
additional connections between the different layers. More precisely, each layer, including
the input layer, is connected not only to its immediate successor, but to all successive layers
in the network. This way, linear and nonlinear relationships can be modelled separately
and the improved data distribution increases the network’s ability to generalise [29]. The
standard topology of a cascaded network with one hidden layer containing h neurons is
schematically depicted in Figure 3.

x1

xp

...

z(1)1

z(1)h

...

y1

yq

...
W(1)

x W(2)
z

W(2)
x

Input layer Hidden layer Ouput layer

Figure 3. Graphical representation of a fully connected cascade-forward neural network with one

hidden layer. The network features p input nodes x1...p, h hidden neurons z(1)1...h and q outputs y1...q.

The respective weight matrices are denoted by W(·)
· , while the bias terms are not explicitly shown.

In this case, compared to a simple feed-forward network, the CFNN only differs in
its direct paths from the inputs x to the outputs y, weighted by the matrix W(2)

x ∈ Rq×p.
The matrices W(1)

x ∈ Rh×p and W(2)
z ∈ Rq×h, on the other hand, weight the connections

between the input and the hidden layer and the hidden and the output layer, respectively.
Overall, this network architecture yields the output equation

f = W(2)
x x + W(2)

z z(1) + b(2), (6)
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where

z(1) = φ
(

W(1)
x x + b(1)

)
, z(1) ∈ Rh (7)

describes the activation levels of the neurons in the single hidden layer and b(1) ∈ Rh, b(2) ∈
Rq denote the biases. As training the network implies optimising over its weights and
biases, combining these to the parameter set

β =
{

W(1)
x , W(2)

x , W(2)
z , b(1), b(2)

}
(8)

recovers the structure of the original regression model (3).
As a staple of modern machine learning, artificial neural networks have, amongst

other things, been used successfully to solve the inverse problem of sensing. For in-
stance, Ref. [30] advocate the use of ANNs to linearise nonlinear sensor outputs and point
out in particular their convenient hardware implementation. Ref. [31], in return, present a
neural network as calibration method for a force/torque sensor and achieve good results.
Calibration strategies based on neural networks have even been proposed for pressure [32]
and temperature [33] sensors to overcome hysteresis and the lack of linearity in time with
remarkable performances. The application of neural networks in the field of biosensing
has been discussed in the literature as well: Ref. [34] successfully employed an ANN as
multivariate calibration model for an amperometric biosensor, while Ref. [35] reported
highly promising results by combining surface-enhanced Raman spectroscopy biosensors
with neural network algorithms. To estimate the glucose levels in human blood by process-
ing the measurement signal of a non-invasive near-infrared spectroscopy (NIRS) sensing
system, Ref. [36] proposes an inverse function delayed neural network, while Ref. [37]
employs a nonlinear stacked auto-encoder deep neural network to the same end. However,
it is most common in this context is to train neural networks as models of the forward
mapping, i.e., to predict the resonance spectrum either from the molecular structure [38] or
from the plasmonic geometric parameters [39].

2.2. Gaussian Process Regression

Gaussian process modelling is a non-parametric Bayesian approach towards regres-
sion and classification problems. Its core idea is, that instead of specifying a parametric
model function f (x, β), it is assumed that f is distributed as a Gaussian process

f (x) ∼ GP
(
µ(x), k(x, x′)

)
. (9)

A Gaussian process GP defines a probability distribution in the function space and is
completely determined by a mean

µ(x) = E[ f (x)] (10)

and a covariance or kernel function

k(x, x′) = E
[(

f (x)− µ(x)
)(

f (x′)− µ(x′)
)]

. (11)

The mean µ(x) simply corresponds to the distribution’s expected value and can therefore
be regarded as a naive guess for the underlying function f . The kernel k(x, x′), on the
other hand, describes the covariance or similarity between the function values of two
points x and x′ and thus encodes prior assumptions about the properties of f , such as its
smoothness and periodicity. Evaluating the Gaussian process for some arbitrary input
vector x∗ implies sampling from the multivariate normal distribution

f (x∗) ∼ N (µ(x∗), k(x∗, x∗)) (12)

commonly referred to as prior. This is showcased in the left panel of Figure 4.
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Gaussian prior distribution (12)
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Figure 4. Visualisation of the working principle of a Gaussian process regression with an example
target function. Note that both the input x ∈ R, as well as the dependent output y ∈ R in this
example are dimensionless. (Left panel) Gaussian prior distribution (12). (Right panel) Gaussian
conditional posterior distribution (15) approximating the underlying target function y from given
measurement points D = (X, Y).

The fine black curves represent three samples drawn at random from this distribution.
Note that their shape is determined exclusively by the chosen mean and kernel function.
However, given a set D = (X, Y) of known training data with

X =
[

x1 . . . xN
]
∈ Rp×N ,

Y =
[

y1 . . . yN
]
∈ Rq×N ,

(13)

this information can be incorporated and the Gaussian prior can be expanded to the
joint distribution [

Y
f (x∗)

]
∼ N

([
µ(X)
µ(x∗)

]
,
[

K + σ2
n I k∗

k>∗ k(x∗, x∗)

])
(14)

where σ2
n is the variance of some additive zero mean measurement noise and K = K(X, X),

k∗ = K(X, x∗) denote the covariance matrices between all training points and all pairs
of training and test points, respectively. By conditioning the joint prior on the previous
observations, the multivariate posterior

f (x∗)
∣∣X, Y, x∗ ∼ N

(
f̄ ∗, cov( f ∗)

)
f̄ ∗ = µ(x∗) + k>∗

[
K + σ2

n I
]−1(

Y− µ(X)
)

cov( f ∗) = k(x∗, x∗)− k>∗
[
K + σ2

n I
]−1

k∗

(15)

is obtained which describes the probability distribution of the function value f (x∗) given
the training data set D. As can be seen in Figure 4 on the right, in contrast to the prior,
samples from the posterior approximate the underlying function (dark blue) quite well,
even for a small number of measurement points (black squares). Hence, as predictive
output of the regression model, one can simply take the posterior mean f̄ ∗ (light blue), a
finite sum of weighted kernel functions centered around the measurement points X [40].
Note that, unlike ANNs, a Gaussian process regression does not require any numerical
training but instead uses all available data explicitly for each single prediction. While this
may cause a significantly higher computation time, training-based effects, like overfitting
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the regression model, do not occur. Moreover, the covariance cov( f ∗) inherently provides
a benchmark for the quality of the prediction, as shown by the light grey 95% confidence
intervals in Figure 4.

The applicability of Gaussian process regression to the inverse problem of sensing has
been demonstrated in the literature: In fact, both the estimation of the gas concentration a
MOX sensor is exposed to [41], as well as the output quantification of a flexible tactile sensor
afflicted by measurement noise and hysteresis are handled equally well [42]. On top of
that, Ref. [43] points out the robustness against drift environments achieved by calibrating
a chemiresistor sensor via a GPR model. In addition, based on GPR, several calibration
models for near-infrared spectroscopic sensing have been developed and employed to
predict single chemical properties [44–46]. Here, the authors specifically emphasise the
improved performance over traditional regression methods. However, regarding glucose
sensing, the employment of Gaussian process regression is currently limited to predictions
of the blood glucose levels based on physical activity data [47] or general categorical
information [48].

Remark 1. At the time of writing, to the authors’ best knowledge, neither a Gaussian process
regression model, nor any kind of artificial neural network has been proposed as a possible solu-
tion to the inverse problem of surface-enhanced infrared absorption spectroscopy featuring gold
nanoantennas. Besides, the findings of such a comparative study could also prove insightful for the
calibration of other biosensing systems.

3. Experimental Setup

As this paper builds upon the work of the aforementioned publications by Küh-
ner et al. [23] and Schuler et al. [26], we employ exactly the same sensor setup as described
in Section 1, measuring by SEIRA spectroscopy an analyte’s (dimensionless) relative re-
flectance r(ν̃) ∈ [0, 1] in the spectral range from ν̃min = 900 cm−1 to ν̃max = 1300 cm−1.
After each measurement, the sensor flow cell is flushed clean to remove any residual
molecules. Technical details and specifications regarding the used equipment are listed in
Appendix A.

Overall, measurements are performed on pure water, aqueous solutions containing a
single monosaccharide, i.e., either glucose or fructose, and aqueous solutions containing
both monosaccharides. The respective concentrations thereby range from 0 g/L to 60 g/L.
With 69 samples, most measurements are performed on pure water, which allows for
establishing a reliable zero basis for the regression. The exact number of analysed samples
with the corresponding monosaccharide concentration compositions are listed in the two
tables below: Table 1 provides information on the single monosaccharide measurement
cycles, where the experimental setup is identical for glucose and fructose, while Table 2
gives insight into the analysis of the double monosaccharide solutions.

Table 1. Single monosaccharide samples: Number of analysed samples for each concentration of
either glucose or fructose in an aqueous solution.

Monosaccharide Concentration in the Sample in g/L Number of Samples

5 4
10 8
20 2
25 2
30 2
50 3
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Table 2. Double monosaccharide samples: Number of analysed samples for each composition of
concentrations of glucose and fructose in an aqueous solution.

Concentration of Glucose Concentration of Fructose Number of Samplesin the Sample in g/L in the Sample in g/L

5 5 2
5 10 1
10 5 1
10 10 3
10 15 1
15 10 1
10 20 2
20 10 2
25 25 1
30 60 1
60 30 1
50 50 1

For each sample, 25 measurements are recorded. This data are subsequently split up:
80% of the spectra are used to train the various regression models introduced in Section 2
(training data), while the remaining 20% are used to evaluate the prediction accuracies (test
data). This approach is considered state of the art in machine learning.

A recorded reflectance spectrum r(ν̃) is not directly fed into a regression algorithm as
input vector x ∈ Rp. Instead, it is first subject to the pre-processing routine presented in
the following.

3.1. Data Pre-Processing

Figure 5 shows on the left some example measurement data as obtained directly from
the SEIRA spectroscopy sensor.

SEIRA spectra, recorded
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Figure 5. Pre-processing step 1: normalisation of the recorded SEIRA spectroscopy sensor data. (Left
panel) raw measured spectra. (Right panel) spectra normalised with respect to the Euclidean norm.

The spectra depicted in black were recorded for measurements performed on pure
water, while the blue spectra belong to some aqueous monosaccharide solutions of different
concentrations. Note that in this section the figures serve as qualitative visualisation and
are not purposed for a quantitative analysis. As can be seen, in both cases, the spectral
baselines are affected by a notably varying scaling. This can be attributed to fluctuations
in the transmitted energy of the measurement signal caused by external interferences and
disturbances. In order to compensate for this, the measured spectra are normalised with
respect to the Euclidean norm such that



Sensors 2022, 22, 7 10 of 18

r̄(ν̃) =
r(ν̃)
‖r(ν̃)‖2

. (16)

The resulting normalised spectra r̄(ν̃) are shown in the right panel of Figure 5, the pure
water spectra again in black and in blue the spectra of the sugary solutions. Clearly, the
normalisation increases the measurements’ comparability, as it aligns the spectral baselines
and thus creates a common zero reference. Moreover, the known vibrational fingerprint
wavenumbers

ν̃gluc =
{

1034 cm−1, 1078 cm−1
}

, (17)

ν̃fruc =
{

1063 cm−1, 1080 cm−1
}

(18)

of glucose and fructose, highlighted in yellow, can easily be confirmed.
Subsequently, the measurement data’s dimensionality is to be reduced and relevant

patterns are to be isolated. To do so, a principal component analysis [25] of the normalised
training data are performed. Mathematically speaking, this means centering the data and
changing its basis by projecting it into the eigenspace of its covariance matrix. The SEIRA
spectra are then given as linear combinations of the eigenvectors (principal components)
weighted by their associated eigenvalues (scores). While principal components rarely have
a physical interpretation, they each represent a pattern found in the data, for instance,
they replicate the plasmonic resonance or exhibit local extrema at the spectral fingerprint
wavenumbers of interest. Principal components associated with less dominant patterns,
on the other hand, can be omitted from the superposition in order to decrease the data’s
dimensionality and low-pass filter some of the measurement noise. Preliminary studies
by Kühner et al. [23], as well as our own empirical investigations, have shown that, to
model the SEIRA spectra, the four main principal components suffice. This is showcased
in Figure 6, where the normalised example spectra of aqueous monosaccharide solutions
previously introduced in Figure 5 are approximated by these.
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Figure 6. Pre-processing step 2: approximation of the SEIRA spectra by the four main principal
components identified in the training data. (Left panel) normalised SEIRA spectra and their principal
component approximation. (Right panel) magnification of the boxed area in the left panel.

Clearly, the resulting curves are much smoother and yet retain their general shape and
features. This can be seen especially well on the right, where the spectral interval boxed in
on the left is magnified. Evidently, the critical spectral dips at the fingerprint wavenumbers,
and therefore the information about the monosaccharide levels, are preserved.
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The prominence of each principal component pattern in a single given sample is
encoded by its respective score, which, in return, characterises a SEIRA spectrum in
terms of that pattern. Accordingly, these scores are ideally suited as input data for the
regression model. Therefore, in this paper, the scores {si | i = 1 . . . 4} of the first four
principal components identified in the normalised training data are used as input vector

x =
[

x1 . . . x4
]> (19)

=
[

s1 . . . s4
]> ∈ Rp=4 (20)

for the regression analysis. This implies that the test data, as well as any further measure-
ment, have to be normalised, centered and projected onto these principal components. In
summary, this yields the algorithm structure schematically outlined in Figure 7, which
visualises the different processing of the training and test data as described in this section.

SEIRA
spectroscopy

normalisation
& centering

decomposition into
principal components

normalisation
& centering

projection onto
principal components

numerical training/
Bayesian inference

evaluation
f (x∗, β)

predicted test data
concentrations f (x∗, β)

regression model f
rtrain(ν̃)

training data concentrations y =
[

cgluc cfruc
]>

rtest(ν̃)

r̄train(ν̃)

r̄test(ν̃)

x

x∗

PCs f , β

Figure 7. Graphical abstract of the signal processing routine performed in this paper: The mea-
sured data are split into training and test samples, normalised with respect to the L2-norm and
centered. Subsequently, the data are decomposed into or projected onto its principal components and
passed on to the various regression models which finally output the predicted glucose and fructose
concentrations in the sample.

4. Results

In this section, the implementation of the various regression algorithms presented in
Section 2 is addressed and their performance is demonstrated for the measurement series
given in Section 3. Since machine learning methods lack an inherent physical interpretation
of the data, to ensure the validity of the results, predicted negative concentrations are set
to zero. Moreover, to robustify the regression against outliers and measurement noise,
it is averaged over the predictions of five related measurements. Finally, the results are
discussed and put into perspective.

Remark 2. Note that, in this section, all figures and plots share the same structure: To visualise our
results, we employ error scatter plots. These show for each measurement the model prediction error
e = y− f (x, β) in g/L as a function of the actual concentration y in g/L as a dark blue circular
marker. More precisely, the top panel always shows the deviation in the glucose level estimate, while
the lower panel shows accordingly the deviation of the estimate of the fructose level in the sample.

4.1. Cascade-Forward Neural Network

For the regression analysis subject to this paper, we employ a CFNN with two hidden
layers containing h1 = 40 neurons in the first and h2 = 8 neurons in the second one,
respectively. Considering the weights and biases, this results in 666 tunable network
parameters, i.e., β ∈ R666. Furthermore, we use the popular sigmoid activation function

φ(u) =
1

1 + e−u . (21)
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The network is trained with the computationally efficient, gradient-based Adam optimisa-
tion algorithm [49]. The goal of the training is to fit the network as closely as possible to the
training data, i.e., to optimise the network’s predicted output for the given measurements.
A fully trained model can therefore be benchmarked by re-evaluating it for some already
known training samples. The results of this re-substitution are shown quantitatively with
the error plot in Figure 8.
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Figure 8. Prediction error made by the CFNN for the training data. (Top panel) deviation in the
predicted glucose concentration plotted over the actual concentration. (Bottom panel) deviation in
the predicted fructose concentration plotted over the actual concentration.

Clearly, the network’s output does not perfectly match the actual monosaccharide
levels; however, in most cases, the predictions are quite accurate nonetheless. In fact, the
mean absolute deviation of the network’s output for known input vectors is quite small
with 0.22 g/L, which corresponds to 5.73%. This suggests that the training was successful
and that the network has been adapted to the system, even though overfitting cannot be
excluded at this point. The CFNN’s performance is successively demonstrated by inputting
the previously unknown test data. Again, the results are visualised with an error plot, see
Figure 9.
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Figure 9. Prediction error made by the CFNN for the test data. (Top panel) deviation in the
predicted glucose concentration plotted over the actual concentration. (Bottom panel) deviation in
the predicted fructose concentration plotted over the actual concentration.
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Qualitatively, the network replicates its good performance for the test data and pro-
vides very precise predictions, although some small deviations cannot be avoided. This
leads to the conclusion that the network has not been over-fitted to the training data and
is able to generalise. Note that the concentrations are over- and underestimated equally
often; no general rule can be deduced from this. Furthermore, as can be seen, the network
struggles with solutions of low monosaccharide concentrations: While the predictions
are highly accurate from 25 g/L upwards, they are slightly less so below. This reduced
sensitivity can be attributed to a decreased signal-to-noise ratio, i.e., the significant spectral
fingerprint dips are not as pronounced and therefore more difficult to discriminate from
measurement noise. A benchmark value taking this correlation into account is the mean
relative deviation, which for the CFNN is 5.3% for the glucose and 7.82% for the fructose
prediction, respectively. Note, however, that a respective maximum absolute error of
1.97 g/L in the glucose and 3.16 g/L in the fructose prediction is not surpassed.

4.2. Gaussian Process Regression

As mentioned in Section 2.2, in a Gaussian process regression, the kernel and mean
function encode prior assumptions about the underlying system. Regarding the inverse
problem of SEIRA sensing, we expect the functional dependence of the monosaccharide
concentrations on the principal component decomposition of the normalised spectral
measurement data to be roughly polynomial and smooth. This is in line with the findings
of Schuler et al. [26]. Consequently, we employ the infinitely differentiable radial basis
function kernel (sometimes referred to as squared exponential kernel)

kRBF(x, x′) = σ2 exp
(
− (x− x′)2

2l2

)
(22)

and the second order mean function ansatz

µ(x) =


wgluc

0 +
4

∑
i=1

wgluc
i xi +

4

∑
i=1

i

∑
j=1

wgluc
ij xixj

wfruc
0 +

4

∑
i=1

wfruc
i xi +

4

∑
i=1

i

∑
j=1

wfruc
ij xixj

. (23)

Note that this does not necessarily imply that the Gaussian process regression model
operates in a quadratic feature space. The hyper parameters σ, l ∈ R wgluc, wfruc ∈ R15

as well as the measurement noise variance σn ∈ R are optimised numerically in advance,
before the predictive posterior distribution is inferred. Bayesian inference differs from
neural network training in so far, that all available training data are explicitly exploited
for each single prediction. This implies that a GPR yields highly accurate predictions for
known inputs, as showcased in Figure 10.

Analogously to Figure 8, the discrepancies in the estimated glucose and fructose
levels are plotted over the actual concentrations in the training samples. In contrast to the
predictions obtained by the neural network in Section 4.1, however, the GPR matches the
actual sugar levels almost perfectly with a mean absolute deviation of 0.009 g/L (0.22%).

As basis for a quantitative assessment of the performance of the GPR for the unknown
test inputs consider the error plot in Figure 11. Clearly, like the CFNN, the GPR is more
reliable and precise in detecting larger amounts of specimen. However, unlike the neural
network, the predictions for lower monosaccharide concentrations are overall rather accu-
rate as well. This is reflected in the GPR’s small mean relative deviations of 2.28% and 2.8%
for the predicted glucose and fructose levels, respectively, which attest to the method’s
high sensitivity.
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Figure 10. Prediction error made by the GPR for the training data. (Top panel) deviation in the
predicted glucose concentration plotted over the actual concentration. (Bottom panel) deviation in
the predicted fructose concentration plotted over the actual concentration.
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Figure 11. Prediction error made by the GPR for the test data. (Top panel) deviation in the pre-
dicted glucose concentration plotted over the actual concentration. (Bottom panel) deviation in the
predicted fructose concentration plotted over the actual concentration.

5. Discussion and Outlook

Overall, the presented machine learning methods of regression generalise well from
the training data and provide both accurate and reliable estimates of the glucose and fruc-
tose concentrations in the analysed samples. However, it stands out that both approaches
perform slightly but clearly better at predicting glucose concentrations. This might be
attributed to the design of the gold nanoantennas in the SEIRA sensor flow cell: Since
their geometry was chosen to match the plasmonic resonance to the spectral fingerprint of
glucose, measurements of the fructose level suffer a lower signal-to-noise ratio, which, in
return, compromises the accuracy of the concentration estimates.

In the following, consider the key benchmark values reached by the different algo-
rithms collected in Table 3. To allow for a more well-rounded comparison and a thorough
evaluation, the scores achieved by classic methods of regression (i.e., linear/polynomial
regression, support vector regression) and by the optimisation-based method by Schuler
et al. [26] are listed as well.
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Table 3. Rating scores for various monosaccharide concentration estimation methods.

Method of Estimation Maximum Absolute Mean Deviation RMS Error
Deviation g/L Abs. g/L, Rel. % g/L

Cascade-forward neural network 3.16 0.29 0.576.56

Gaussian process regression 2.6 0.15 0.472.54

Linear regression 21.45 4.05 5.9339.94

2nd order polynomial regression 8.37 1.11 1.8117.48

Support vector regression 8.11 0.61 1.7314.78

Schuler et al. [26] 4.29 0.71 1.235.15

In total, three key benchmark values are computed, each evaluating a different aspect
of the prediction accuracy. Respectively, the best values are printed in bold. The maximum
absolute deviation allows for an evaluation of the algorithms’ worst-case performance and
therefore quantifies the regression models’ ability to generalise from the training data. The
mean deviation, in contrast, provides a measure for the reliability and consistency of the
predictions. Here, for the sake of completeness, both the absolute and the relative mean
error are given. Finally, as an overall score, the root mean squared (RMS) error combines
the distinct aspects of the other benchmarks: On the one hand, the error over the entire
measurement series is taken into account; on the other hand, larger deviations are penalised
more heavily.

Linear regression represents a first, naive approach in many cases. For the inverse
problem of SEIRA glucose sensing, however, it clearly does not provide an adequate so-
lution. In fact, with a mean relative deviation of roughly 40% and errors reaching up to
21.45 g/L, many predictions are effectively mere educated guesses and not sufficiently reli-
able. This underlines that the correlation between the monosaccharide concentrations and
the measured spectrum is nonlinear. Accordingly, the second order polynomial regression
achieves significantly better results, as projecting the input data into a quadratic feature
space partially accounts for this nonlinearity. Note that, with an RMS error of 1.73 g/L
compared to the polynomial regression’s 1.81 g/L, the support vector regression performs
similarly well. Considering the related mathematical formulations of both regression strate-
gies, it is reasonable to assume that the latter operates in a near-quadratic feature space, too.
A quadratic relationships is also assumed in the selection of the Ansatz functions in the
optimisation-based method by Schuler et al. [26]. Unsurprisingly, this approach surpasses
the other two by only a small margin.

Overall, the Gaussian process regression model tops the ranking ahead of the cascaded
neural network. Both approaches clearly outperform all classic methods of regression,
proving highly reliable and producing basically no outliers. This implies, that both suc-
cessfully compensate the nonlinearity in the data. However, with its relative and absolute
mean deviation less than half that of the runner-up, the GPR stands out in particular for its
consistency and continuous accuracy. As mentioned in Section 4, especially at predicting
lower monosaccharide concentrations, the GPR performs better than the neural network.
A possible explanation for this is that the probabilistic setup inherently takes uncertainties
in the system like measurement noise explicitly into account and is therefore able to better
filter the information. Considering that most sensors employ linear calibration models,
the aspects above imply that Gaussian process regression has a high potential not only
as a solution to the inverse problem of SEIRA glucose sensing, but for sensor calibration
in general. To investigate this hypothesis and explore the transferability of our findings,
we suggest a calibration of other biosensing systems by GPR. Future studies could also
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evaluate the use of Bayesian neural networks: As an analytic solution, the Bayesian con-
ditioning of the predictive posterior distribution in a GPR makes sure that all available
training data are explicitly used. While this in itself is an advantage, it comes at the expense
of computability. This constitutes a key difference compared to neural networks: It is to
be expected that training-based approaches would benefit the most from a larger batch
of training data, as, on the one hand, numerical effects would have less impact and, on
the other hand, the feasibility of a globally optimal adaptation would increase. Bayesian
neural networks theoretically exploit the advantages of both regression strategies and
might therefore offer further improvements.

Clearly, in its current configuration, the SEIRA glucose sensor by Kühner et al. [23] is in
an early stage of development and is not competing with state of the art glucose monitoring
devices approved for medical use. However, by pre-processing the measurement data as
described in Section 3.1 and employing modern machine learning algorithms for signal
analysis, a roughly 60% lower RMS error than Schuler et al. [26] and thus significant
improvements on previous methods could be achieved. For the further development of the
sensor, we suggest to focus more heavily on the critical concentrations of below 5 g/L and
to explore different nanoantenna geometries.
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Appendix A. Technical Specifications and Software

For the processing of the recorded data, computations, and visualisations both Python
and MATLAB® were used.

Table A1. Technical equipment used for recording the measurements.

gold nanoantennas length = 3500 nm, width, thickness = 100 nm,
2 nm chromium adhesion layer underneath,
periodicity in x-direction = 4500 nm,
periodicity in y-direction = 3000 nm,
fabricated via electron beam lithography (EBL)

FTIR spectrometer Bruker VERTEX 80
Bruker Optik GmbH, 76275 Ettlingen, Germany

Optical microscope Bruker Hyperion 2000, Schwarzschild objective
15-fold magnification, NA = 0.4
Bruker Optik GmbH, 76275 Ettlingen, Germany

detection nitrogen-cooled mercury cadmium telluride (MCT)
detector, measurement spot 90 µm× 90 µm
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