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Abstract
Resonant phenomena have been extensively used in micro- and nanophotonics. Mathematically,
these phenomena originate in a discrete set of basis functions known as resonant states or
quasi-normal modes. Therefore, it is extremely beneficial to develop theoretical approaches that
use these resonant states as a physically meaningful basis in order to describe the light–matter
interaction in micro- and nanoresonators. However, the question of how to normalize resonant
states correctly for such an expansion initially hampered many theoretical attempts. Only
recently, this problem of normalization has been solved via different approaches, providing a
completely rigorous basis for not only explaining but also quantifying a large variety of resonant
phenomena. This review article provides an overview of the related activities in the field and
typical applications. We compare the different approaches with a focus on formulations via the
Mittag-Leffler expansion of the Green’s dyadic on the complex frequency plane and an analytic
normalization scheme for the resonant states. Specifically, we discuss the pole expansion of the
near and far field and outline related theoretical tools such as the resonant-state expansion and
first-order perturbation theories. These approaches allow for efficiently describing light–matter
interaction between local emitters and resonators, scattering of light at nanoparticles, and
resonantly-enhanced optical sensing. Moreover, the resulting equations provide insight into the
underlying physical mechanisms, which can be used to tailor the light–matter interaction and to
predict new phenomena such as the recently observed complex-valued mode volumes. Since the
Mittag-Leffler theorem is valid beyond the continuation of physical quantities to the complex
frequency plane, an introduction to alternative modal approaches, namely those based on
permittivity eigenmodes and propagating modes, is included here as well. While the link of
these approaches to resonant phenomena is less obvious, they can be advantageous in some
cases. Finally, we show that modal theories can be even applied in nonlinear optics. Hence, the
theory of resonant states provides a general theoretical framework in micro- and nanophotonics.
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1. Introduction

The theory of resonant states (RS) in nanophotonics has attrac-
ted a lot of interest in recent years. It has been applied to
various systems such as single nanoantennas [1–10], photonic
crystals [11–15], waveguides [16, 17], and cavities [18–20] to
describe multitudinous effects such as the interaction of emit-
ters with resonators [2, 3, 7], light scattering [9, 13, 21–23],
and sensing [11, 14, 24–27].

RS are also known as quasi-normal modes. Sometimes,
they are simply termed as modes or resonances. In fact, all
these expressions can be used equivalently, with the term
quasi-normal modes arising probably the first time for describ-
ing tapered fibers [28], later reframed in the context of damped
mechanical oscillators [29] and stellar models [30]. In con-
trast, the term RS stems from quantum theory and scattering
at nuclei [31].

The strength of the theory of RS is to describe resonant
phenomena. From a physical point of view, resonant phe-
nomena in nanophotonics can have different origins. An over-
view over various resonant systems is given in figure 1. Com-
mon to all systems is some mechanism to confine light in a
localized region in space. It turns out that this confinement
becomes significantly amplified at certain resonance frequen-
cies. Often, it is possible to identify a scaling behavior of the
resonance frequencies with some geometrical parameters. In
many cases, the scaling is linear and can be interpreted as the
result of constructive interference. A prominent example is
that of a whispering gallery mode [32], where light is con-
fined inside a material with high refractive index by total
internal reflection at the boundary to a low-index surround-
ing. This results in constructive interference of light at the
resonance frequencies after one roundtrip. For instance, the
resonance frequency scales linearly with the radius in spher-
ical geometries. Owing to their narrow linewidth, whispering
gallery resonances are often used in sensing devices [24, 32–
34], see figure 1(a). Another important resonator type is based
on collective electron oscillations, so-called surface-plasmon
polaritons, see [35] and references therein. When these
surface-plasmon polaritons are bound to a finite geometry as
depicted in figure 1(b), they form localized plasmon reson-
ances with very large field enhancements in localized hotspot
regions [36–42]. Panel (c) in figure 1 displays pairs of gold
spheres—so-called dimers—fabricated by the DNA origami
technique [43]. In that experiment, a fluorophore molecule
walks autonomously into the electromagnetic hotspot between
the spheres, which can be detected optically as a reduction
of the fluorescence lifetime. Alternatively, light can be con-
fined by regions with photonic bandgaps that arise in photonic
crystals [44–46]. An example of a photonic crystal cavity is
shown in figure 1(d) [19]. More recently, high-index dielectric
nanoresonators have been investigated that support Mie reson-
ances [47–51]. Their advantage is a reduced loss compared to
plasmonic nanoresonators combined with a high flexibility to
tailor the interaction of different electric and magnetic reson-
ances, see schematics and results in figures 1(e)–(g).

Resonant states can be categorized by carrying out a
multipolar decomposition [52]. This yields three different

contributions with typical near- and far-field properties: elec-
tric, magnetic, and toroidalmultipoles [53–55]. Often, only the
lowest-order multipoles suffice to gain a better understanding
of the underlying physic. For instance, the interference of tor-
oidal and electric dipoles may lead to the occurrence of ana-
poles, which are nonradiating charge-current configurations
that have been described in various systems [56–58].

Mathematically speaking, RS constitute eigensolutions of a
set of differential equations at complex-valued eigenfrequen-
cies that decay in time while exhibiting outgoing boundary
conditions outside a resonator geometry. One may wonder
about the fact that the eigenfrequencies are in general not real
numbers, while experimental observations are only carried out
at real frequencies. What is then the implication of these RS
at complex eigenfrequencies? As a picturesque analogy, con-
sider an old alley, where trees are planted on one side of the
road. If the roots of the trees have been growing below the
bitumen, the road is no longer plain. Therefore, one feels the
impact of the nearby trees, albeit staying always on the road.
The same holds for RS. They typically occur at frequencies
with negative imaginary parts, with few exceptions such as the
exotic bound states in the continuum that have a real-valued
eigenfrequency [59–65]. Particularly those RS with eigenfre-
quencies close to the real axis can have significant impact on
the optical response at real frequencies. From a physical per-
spective, RS oscillate in time with the real part of the eigenfre-
quency, while twice the magnitude of the imaginary part cor-
responds to the decay rate in time domain and the resonance
linewidth in frequency domain. The decay in time happens due
to two possible loss channels: Intrinsic losses in the materials
and radiation to the exterior.

While anapoles suppress the far-field radiation only at cer-
tain frequencies due to the interplay of two RS, bound states in
the continuum are RS that do not couple to the far-field at all.
They can be classified as symmetry-protected and accidental
bound states in the continuum [61, 66]. The former can be
found whenever the coupling with the far field is forbidden by
symmetry constraints of the geometry and the incoming light,
which can be, e.g. achieved in photonic crystal slabs [67]. In
the latter case, we can understand the origin of the nonradi-
ative properties by the coupling of two or more RS, which
may yield a zero resonant linewidth under certain ‘accidental’
conditions. Another interesting phenomenon that is attributed
to the coupling of RS in open resonators is that of excep-
tional points [24, 68–70], where minimum two eigenstates in
a system coalesce in field distribution and frequency. Finally,
the arrangement of several resonators in periodic arrays also
yields intriguing effects such as narrow surface-lattice reson-
ances [71–74]. In that case, the interaction of the individual
resonators is mediated by plane waves close to their diffrac-
tion opening, which is known as Rayleigh–Wood anomalies
[75–77]. This interplay may result in extremely sharp spectral
features that can be used, e.g. in optical sensors [40].

As discussed above, RS exhibit complex eigenfrequen-
cies with typically nonzero imaginary parts. If the negat-
ive imaginary part of the eigenfrequencies can be partially
associated to radiative losses, this results in the peculiar
behavior that the eigensolutions grow with distance to the
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Figure 1. Examples of different resonant phenomena: (a) dielectric sphere supporting whispering gallery resonances for sensing
applications. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Methods,
Whispering-gallery-mode biosensing: label-free detection down to single molecules, Frank Vollmer et al, Copyright © 2008; (b) plasmonic
resonances in single gold spheres. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature
Photonics, Plasmon nano-optical tweezers, Mathieu L Juan et al, Copyright © 2011. (c) experimental realization of plasmonic resonances in
gold dimers fabricated by DNA origami technique. Reprinted with permission from [43]. Copyright (2019) American Chemical Society; (d)
real (left) and imaginary (right) part of the inverse mode volume in a photonic crystal cavity. Reprinted with permission from [19] © The
Optical Society; (e) electric dipolar (ED), electric quadrupolar (EQ), magnetic dipolar (MD), and magnetic quadrupolar (MQ) Mie
resonances in dielectric disks. Reprinted with permission from [51]. Copyright (2021) American Chemical Society; (f), (g) SEM image and
scattering cross section (SCS) for a silicon sphere with the total cross section in black, the electric and magnetic contributions in orange and
green, respectively, and the relative phase between the resonances in blue. Reproduced from [50]. CC BY 4.0.

resonator. The physical explanation is that light further away
from the resonator has left the resonator at a time at which
more energy had been stored inside the resonator. As a
consequence, conventional normalization schemes for these
eigensolutions fail. However, the absence of a suitable normal-
ization would render any theory of RS to be purely phenomen-
ological. Several alternative approaches have been developed
to solve this problem for quantummechanics [78–80] and later
applied to propagating modes in optical waveguides [81–84]
and RS in optical resonators [1–3, 5–7, 11, 12, 17, 85–91].
Owing to this plethora of different formulations, the question
of how to correctly normalize RS was debated a lot in recent
years [90, 92, 93]. Predominantly two normalization schemes
became widely accepted: (1) analytic normalizations and (2)
the application of complex coordinate transformations, which
is equivalent to using so-called perfectly-matched layers for
the mode normalization [3]. Interestingly, it appears that those
authors who are using the term quasi-normal modes prefer the

latter approach. In contrast, the term RS is mainly used in the
context of analytic normalization schemes [1, 91]. While pre-
vious reviews in the field have been written from the perspect-
ive of quasi-normal modes [94, 95], this review of the theory
of RS therefore sheds a slightly different light on the topic. We
focus on analytic normalization schemes and the derivation of
the resonant expansion via the Mittag-Leffler theorem, which
can be applied to the Green’s dyadic.

Another relevant aspect that deserves a broader discussion
is how to derive the RS of a perturbed system based on the
RS of an unperturbed reference system, which is known as
the resonant-state expansion. Originally, the term resonant-
state expansion was used in quantum mechanics for a general
expansion of functions or operators in terms of RS [96, 97], but
later refined to a perturbation theory in all orders by the Mul-
jarov group [1, 91, 98]. In general, this perturbative approach
can be applied to arbitrarily large perturbations, provided that
enough basis states of the unperturbed system are taken into

3

https://creativecommons.org/licenses/by/4.0/


Semicond. Sci. Technol. 37 (2022) 013002 Topical Review

account. It results in a simple eigenvalue equation that can
be solved much faster than conventional numerical schemes
for determining the RS. Under certain simplifications such as
the consideration of few modes, it boils down to the so-called
coupled-mode theory [99]. However, care has to be taken,
because the RS cannot be used as a complete set of basis func-
tions far outside the resonator [95], so that the considered per-
turbations should be in general localized in the resonator.

In the limit of a single resonant state, the resonant-state
expansion yields a simple first-order perturbation theory.
Thus, it is possible to describe the sensitivity of resonantly
enhanced refractive-index sensors [11, 12, 26, 100, 101]. With
the help of certain corrections, the first-order perturbation the-
ory can be extended to modifications in the exterior [14, 102]
as well as account for the excitation efficiency of the RS as
another important quantity for optimizing a sensor [27].

The review is organized as follows: We begin with the
derivation of the constitutive equation for RS, which requires
to search for solutions of Maxwell’s equations in the absence
of sources and with outgoing boundary conditions. After-
wards, we show how the Green’s dyadic can be expanded in
terms of the RS. Then, we address the question of mode nor-
malization, including a more general derivation of the analytic
normalization that is valid even for nonreciprocal materials.
The next subsection is devoted to orthogonality relations, fol-
lowed by an overview on how to expand the near fields in terms
of the RS and a discussion of the completeness of the basis
of RS. Section 2 concludes with the pole expansion of the
optical scattering matrix. The next section contains an over-
view of the different applications: resonant-state expansion,
first-order perturbation theories and sensing, as well as Pur-
cell enhancement. In the last section before the conclusion,
we provide a brief introduction to related theories such as the
expansion in terms of permittivity eigenmodes or propagat-
ing modes. Finally, we discuss how to use these theories to
describe nonlinear optical phenomena.

2. Theory

We start with Maxwell’s equations in frequency domain,
which we obtain from time domain by using the Fourier
transform:

f(r;ω) =
ˆ
dteiωtf(r, t). (1)

Here, ω is the angular frequency. For the sake of brevity of
notations, we cast the resulting curl Maxwell’s equations in a
compact matrix-vector notation [91]. In Gaussian units, they
read

M̂(r;ω)F(r;ω) = J(r;ω), (2)

where M̂(r;ω) = kP̂− D̂ represents the so-called Maxwell
operator, with k= ω/c as the vacuum wavenumber, and:

P̂(r;ω) =
[
ε(r;ω) −iξ(r;ω)
iζ(r;ω) µ(r;ω)

]
, (3)

D̂(r) =
(

0 ∇×
∇× 0

)
. (4)

The matrix operator P̂ contains the material parameters,
namely the permittivity ε, the permeability µ, and possible
bi-anisotropic contributions ξ and ζ. In general, ε, µ, ζ, and
ξ are 3× 3 tensors. It should be mentioned that for recip-
rocal materials, thematerial parameters obey ξT =−ζ, εT = ε,
and µT = µ, so that P̂T = P̂, with the superscript T denoting
the matrix transpose. The electric and magnetic fields E and
H, respectively, as well as the currents JE and JH form six-
dimensional supervectors:

F(r;ω) =
[

E(r;ω)
iH(r;ω)

]
, (5)

J(r;ω) =
[

JE(r;ω)
iJH(r;ω)

]
. (6)

Here, JE(r;ω) =−4πij(r;ω)/c, while the magnetic currents
JH have been introduced for symmetry purposes. Note that
other authors have defined various alternative formulations of
a matrix-vector notation [22, 94, 95], which contain no phase
factor of π/2 between electric and magnetic field.

Knowing the Green’s dyadic Ĝ of equation (2), which
obeys the constitutive equation:

M̂(r;ω)Ĝ(r,r ′;ω) = Îδ(r− r ′), (7)

where Î is a six-dimensional unit matrix, we can calculate the
fields for a given source as:

F(r;ω) =
ˆ
dV ′ Ĝ(r,r ′;ω)J(r ′;ω). (8)

2.1. Constitutive equation of resonant states

Consider the case of a very short excitation at time t0 by a
source J0(r)δ(t− t0). In that case, the time-dependent electric
fields are given by:

E(r, t) = 1
2π

ˆ
dω e−iω(t−t0)E(r;ω), (9)

where E is the electric field generated by the source J0. Now
assume that Ĝ and, thus, E has a countable number of simple
poles at frequencies ωn =Ωn− iΓn with Ωn,Γn ∈ R,Γn > 0,
and t> t0. Then, the residue theorem yields for a closed sur-
face around the negative imaginary frequency half plane that:

E(r, t) = i
∑
n

e−iωn(t−t0)Res[E(r;ω),ωn]. (10)

Hence, the time-dependent field oscillates with frequencies
Ωn while decaying in time as exp[−Γn(t− t0)]. The optical
response is therefore solely determined by the fields at the
complex poles. This is also illustrated in figure 2, where the
transmittance of a planar slab is extended to the complex
wavenumber plane. As it can be seen, the transmittance at real
wavenumbers is governed by the nearest poles on the complex
wavenumber plane [13].
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Figure 2. Analytic continuation of the transmittance of a planar
dielectric slab of thickness d to the complex normalized
wavenumber plane kd. The slab has a refractive index of n= 2.5 and
is surrounded by air. The incidence direction is normal to the slab. It
can bee seen that the transmittance maxima at real wavenumbers are
manifestations of the poles at complex wavenumbers, which can be
associated with Fabry–Perot modes of different orders. Reprinted
figure with permission from [13], Copyright (2018) by the
American Physical Society.

Since the time-dependent field E(r, t) must be real-valued,
we infer that for every pole at a frequency ωn, there must
be another pole at −ω∗

n with residue Res[E(r;ω),−ω∗
n ] =

−Res[E(r;ω),ωn]∗.
Equation (10) is quite descriptive. It means that a short

excitation will store a finite amount of energy in the system,
which will allow the resonator to oscillate at the excited reson-
ance frequencies. While doing that, it can lose energy via dif-
ferent loss channels, resulting in an exponential decay of the
oscillations in time with a decay rate of Γn. This is exactly the
same process as in acoustic resonators, e.g. in a bell or guitar
string that is excited by a short strike. Experimental observa-
tions of this decay are often hampered in optics by the large
decay rate of typical resonances, i.e. a rather short lifetime
compared to the excitation pulse. However, for long-lived res-
onances, the exponential decay in time can be observed, as
shown by Hergert et al [103].

Let us now address the consequences for equation (7). If the
Green’s dyadic Ĝ has poles at frequencies ωn but the right-
hand side of equation (7) does not depend on frequency, we
can infer that the operator M̂must have roots at these complex
frequencies:

M̂(r;ωn)Fn(r) = 0. (11)

This is the constitutive equation for RS. Since the Green’s
dyadic yields only outgoing fields for spatial regions out-
side a given source J, it follows that the resonant fields
Fn in equation (11) must possess purely outgoing bound-
ary conditions outside the resonator. This is the reason why
equation (11) can be fulfilled only for a discrete set of
frequencies ωn. Without that restriction, there exist solutions

of equation (11) for any frequency with a given incident field,
which resembles the typical situation of a scattering problem
in optics with a known incident field and the resulting scattered
field [95].

Of course, the question is what outgoing boundary con-
dition mean at complex frequencies. At real frequencies, we
can use the Silver–Müller radiation condition [104] for isol-
ated resonators embedded in a homogeneous and isotropic sur-
rounding, which specify outgoing boundary conditions as:

lim
r→∞

er×E= ZH, (12)

lim
r→∞

er×ZH=−E, (13)

where er is the radial unit vector and Z is the impedance of the
surrounding medium. At complex frequencies, the situation is,
however, more sophisticated. Most importantly, the Silver–
Müller radiation condition does not hold for RS at complex
frequencies [90]. Hence, it can be regarded for modal expan-
sions in terms of RS only as the limiting case at real frequen-
cies [95].

When considering localized sources, the definition of out-
going boundary conditions can be easily extended to complex
frequencies: If a source J is completely localized in a certain
volume, then the fields generated by this source are purely out-
going outside that volume. The problem is that equation (11)
does not contain any sources. Still, it is possible to test the
boundary conditions of solutions of equation (11) by intro-
ducing a localized source that vanishes in the limit ω→ ωn,
i.e. J∝O(ω−ωn). The fields F generated by this source then
have to obey F→ Fn for ω→ ωn. Note that this approach is
also used for deriving the analytic normalization in the next
section. Of course, one needs to clarify, where possible sources
are located in this case. For this purpose, we separate our sys-
tem into a background system with a trivial material distribu-
tion P̂BG that should be free of RS, and a localized non-trivial
variation ∆P̂ that constitutes the resonator:

P̂(r;ω) = P̂BG(r;ω)+∆P̂(r;ω). (14)

Possible test sources for outgoing boundary conditions should
be located in regions with ∆P̂ ̸= 0.

Still, there can be some ambiguity about the optimal set
of RS. For instance, in planar periodic structures, Rayleigh–
Wood anomalies [75–77] arise in the spectra. They occur
spectrally, whenever a plane wave in the super- or sub-
strate changes between propagating and decaying perpen-
dicular to the planar system. In that case, the wavevector
component perpendicular to the slab, which we denote here
as kz, approaches zero. As discussed later, this yields cuts
in the complex frequency plane for the expansion of the
Green’s dyadic [17, 105]. The exact path of these cuts is not
unique [83], but can be chosen in dependence of the selection
of Riemann sheets in the square root function that relates kz
with the vacuum wavenumber k via:

5
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kz =±
√
n2k2 −k2

||, (15)

where n is the refractive index in the super- or substrate and
k|| is the projection of the wavevector parallel to the planar
structure. A common selection for the Riemann sheet with out-
going plane waves, i.e. when to use the positive or negative
sign in equation (15), is to warrant Re(kz)+ Im(kz)> 0, but
other definitions may be better suited. In some cases, it even
turns out that a description of the optical response in terms of
complex propagation constants kz is favorable over an analytic
continuation to complex frequencies [17, 105]. In that case, it
is then possible to account for modes on both Riemann sheets
simultaneously, while the related cut contribution is removed.

Finally, let us briefly address the question on how to obtain
solutions of equation (11). In the cases of planar slabs, spher-
ical particles, or infinitely long cylinders, we can derive the
RS and their complex resonance frequencies by reducing
Maxwell’s equations to a transcendental equation that can
be solved exactly up to machine precision. In very specific
cases such as planar slabs consisting of homogeneous and iso-
tropic non-dispersive materials, it is even possible to write
down closed expressions for the resonance frequencies and
fields [17, 94, 106]. In general, however, numerical methods
are required to determine solutions of equation (11). An over-
view and benchmark of common methods can be found in
[107]. Alternatively, the RS of a complex system can be calcu-
lated from simpler systems with known analytic solutions via
the resonant-state expansion [1, 91], see also section 3.1.

2.2. Pole expansion of the Green’s dyadic

We derive now an expansion of the Green’s dyadic in terms
of poles and residues that is based on the Mittag-Leffler the-
orem [1, 91]. Let us briefly summarize this theorem: if f (z) is a
complex function that is analytic except for a countable num-
ber of poles an with residues bn and the asymptotic behavior
limz→∞ f(z)/zp = 0, it can be expanded as [106, 108]:

f(z) = fp(z)+
∑
n

bn
(z− an)

, (16)

where f0 = 0 and

fp(z) =
p−1∑
m=0

[
f(m)(0)
m!

+
∑
n

bn
am+1
n

]
zm. (17)

That means that for any order p, we obtain a pole contribu-
tion of the form

∑
n bn/(z− an), accompanied for p> 0 by

a polynomial of order p− 1. Let us consider a source term
Jn = (ω−ωn)Sn/c with a localized source Sn that generates
a field F and vanishes at the resonance frequency ωn:

M̂(r;ω)F(r;ω) =
ω−ωn
c

Sn(r). (18)

Since limω→ωn F= Fn, it is possible to show using
equation (8) that if the Green’s dyadic is analytic and

limω→∞ Ĝ= 0 except for a countable number of poles, it
must be of the following form [12, 91]:

Ĝ(r,r ′;ω) = c
∑
n

Fn(r)⊗Xn(r ′)
ω−ωn

. (19)

Yet, this expression contains unknown fields Xn that we will
determine in the following.

Inspired by the generalization of the reciprocity the-
orem [109], we consider now the transposed system:

M̂‡(r;ω)F‡(r;ω) = J‡(r;ω), (20)

which differs from the original system in the sense that the
material operator P̂ is replaced by its matrix-transposed coun-
terpart P̂T so that the Maxwell operator is modified to M̂‡ =
kP̂T − D̂. The superscript ‡ is used to label quantities in this
transposed system. It should be noted that J‡ = J does not
imply F‡ = F, except for reciprocal systems with P̂T = P̂. The
Green’s dyadic of M̂‡ therefore differs in general from Ĝ and
will be denoted by Ĝ‡.

In order to obtain further relations for the transposed fields
F‡, we assume arbitrary sources J1 and J‡2 that are extended
over a finite region in space and generate fields F1 and F‡

2.
Then, we multiply equations (2) and (20) from the left with F‡

2
and F1, respectively, and subtract the results, which yields:

F1 · D̂F‡
2 −F‡

2 · D̂F1 = F‡
2 · J1 −F1 · J‡2. (21)

Integrating this equation over a finite volume V and using the
identity [13]
ˆ

V

dV(F1 · D̂F‡
2 −F‡

2 · D̂F1)= i
˛

∂V

dS · (E‡
2 ×H1 −E1 ×H‡

2)

(22)

results in

i
˛

∂V

dS · (E‡
2 ×H1 −E1 ×H‡

2) =

ˆ

V

dV(F‡
2 · J1 −F1 · J‡2).

(23)

In his tutorial [95], Kristensen derived a suitable bi-
orthogonal basis by the condition that a similar surface integ-
ral as that on the left-hand side of equation (23) must vanish.
We follow this idea, but approach it from a different direc-
tion. More specifically, we consider here generalized recipro-
city relations. In the simple case of reciprocal materials, it can
be shown that [11, 109]:

ĜT(r,r ′;ω) = Ĝ(r ′,r;ω). (24)

This relation can be generalized when reversing all external
bias. For instance, when breaking reciprocity by a static mag-
netic field, this requires reversing the direction of the static
magnetic field. Using the Onsager–Casimir relation that is
based on the work of Onsager and Casimir [110–112], it then
follows [109]:

Ĝ‡(r,r ′;ω) = ĜT(r ′,r;ω). (25)

6
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Expressing the fields F1 and F‡
2 on the right-hand side of

equation (23) via equation (8) and its transposed counterpart,
respectively, we obtain from equation (25) that the right-hand
side of equation (23) vanishes:

ˆ

V

dV
ˆ

V

dV ′[(Ĝ‡J‡2) · J1 − J‡2 · ĜJ1] = 0. (26)

Hence, the left-hand side of equation (23)must equal zero, too:

˛

∂V

dS · (E‡
2 ×H1 −E1 ×H‡

2) = 0. (27)

This is a necessary condition for pairs of fields that obey the
prerequisites of the Onsager–Casimir relation [109] and are
generated by sources that are completely localized inside the
volume V. Due to the latter condition, these fields are inher-
ently outgoing on ∂V. Often, this condition is trivially ful-
filled. However, in some cases, one needs to be more care-
ful in reversing all external bias. For instance, for planar bi-
periodic systems, one can select a phase factor exp(ik|| · r)
for the fields, where k|| is a vector in the plane with peri-
odic boundary conditions [12]. This phase factor is pre-
served within the whole system. Reversing the external bias
means going from k|| to −k|| for the transposed fields F‡.
In [13, 84, 102, 106, 113, 114], this form of reversing the
external bias is called ‘reciprocal conjugation’ and denoted by
a superscript R, because the considered systems are composed
of purely reciprocal materials.

It should be noted that equation (27) also holds in the
case that both sources J1 and J‡2 are outside the volume V,
in which case F1 and F‡

2 are pairs of incoming fields. Based
on these arguments, the only possibility for the left-hand side
of equation (23) to be nonzero when reversing all external
bias between F1 and F‡

2 is that we consider pairs of incom-
ing and outgoing fields, which is used in [13] to construct
the pole expansion of the scattering matrix. In that case, we
select appropriate basis sets to ensure that the left-hand side
of equation (23) is non-vanishing for pairs of incoming and
outgoing fields.

Finally, we can infer from equation (25) that Ĝ and Ĝ‡ have
the same poles, i.e. the operators M̂ and M̂‡ possess the same
spectrum. The constitutive equation for the transposed RS is:

M̂‡(r;ωn)F‡
n(r) = 0. (28)

Note that in general Fn ̸= F‡
n. However, we may follow the

same steps as for deriving equation (19) to obtain the pole
expansion of Ĝ‡, where Fn and Xn are replaced by F‡

n and an
unknown field X‡

n. Then, using equation (25), we obtain the
analytic pole expansion of the Green’s dyadic:

Ĝ(r,r ′;ω) = c
∑
n

Fn(r)⊗F‡
n(r

′)

ω−ωn
. (29)

An alternative way of deriving this relation is to expand the
operator M̂ in a suitable basis, in which equation (11) yields

a nonlinear matrix-eigenvalue equation. In numerical calcu-
lations, this is done via a discretization of the computational
domain, resulting in a finite-sized nonlinear eigenvalue prob-
lem [94, 115–117]. Then, using Keldysh theorem [118, 119],
the expansion of the resolvent is straight-forward [115], with
the representation of F‡

n being a left eigenvector of the nonlin-
ear eigenvalue equation.

At the end of this subsection, let us use the pole expan-
sion of the Green’s dyadic to derive some further relations,
which are of general usefulness. By inserting equation (29)
into equation (7), we obtain the closure relation [91]:

∑
n

ωP̂(r;ω)−ωnP̂(r;ωn)
ω−ωn

Fn(r)⊗F‡
n(r

′) = Îδ(r− r ′).

(30)

Assuming material distributions of the form:

P̂(r;ω) = P̂(r)+
∑
j

Q̂j

ω−Ωj
, (31)

where Ωj are complex poles of the material response with
residues Q̂j [120], it is furthermore shown in [91] how to derive
the following sum rules:

Q̂j(r)
∑
n

Fn(r)⊗F‡
n(r

′)

ωn−Ωj
= 0. (32)

Other forms of sum rules can be found in [7, 96], and a com-
bination of the sum and closure relation yields [91]:∑

n

P̂(r;ωn)Fn(r)⊗F‡
n(r

′) = Îδ(r− r ′). (33)

The implications of the sum rules and closure relations are dis-
cussed later in the context of the completeness of the basis of
RS. Furthermore, the sum rules can be used to obtain the con-
nection between different formulations of the resonant expan-
sion [106].

2.3. Normalization of resonant states

Equation (11) specifies the resonant field distributions Fn
only up to a complex scalar factor. While we can infer from
equation (10) that it should be possible to decompose arbitrary
fields into their resonant contributions, i.e. to assume that the
RS constitute a complete basis set, such an expansion requires
to fix the arbitrariness of the complex scalar factor and to nor-
malize the resonant field distributions uniquely.

For bound eigenstates ψn in quantum mechanics and
lossless waveguides, it is possible to derive a simple ortho-
gonality relation as:

ˆ
dVψ∗

nψm = δnm, (34)

which contains an integral over the entire space and allows
for normalizing the wave functions ψn for a general expansion
in terms of these eigenfunctions. For RS, the situation is not

7
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as trivial. For instance, RS in spherical particles satisfy out-
going fields that scale as exp(iωnr/c)/r for large distances to
the particles. If ωn =Ωn− iΓn with Γn > 0 in order to yield
a solution that is decaying exponentially in time, its spatial
fields scale as exp(iΩnr/c+Γnr/c)/r, i.e. they grow exponen-
tially with r. This diverging behavior is common to all RS that
lose energy via radiation to the surrounding. Hence, a normal-
ization similar to equation (34) is not possible for those RS,
because the integral over the entire space will diverge.

Of course, one may ask if the growing character of resonant
field distributions is unphysical. However, as indicated in the
introduction, there is a simple physical explanation: the fields
further away from the resonator have left the resonator at an
earlier time at which more energy had been stored in it. The
energy is then lost via radiative and nonradiative processes.
The radiative processes carry energy away with the speed of
light, which is fully consistent with causality [121]. The diver-
gent nature of the RS can be thus interpreted as if an infinite
amount of energy had been stored in the resonator at t0 →−∞
and is now distributed over all space.

In early works related to first-order perturbation theor-
ies [100] and Purcell factors [122] of RS in open cavities, the
divergence of RS was either ignored or overlooked, and the
integration over the fields was restricted to a finite volume.
While this may work out reasonably well for some cases, it has
been noted already by Koenderink [123] that the divergence of
such integrals cannot provide accurate results in general. How-
ever, the simplicity of the incorrect theory and its good agree-
ment with many expectations and observations has prevented
the derivation of a more advanced theory for nanophotonics
for more than a decade.

Solutions for a correct normalization of growing fields were
available—either in quantummechanics [79, 80, 124] or wave-
guide theory [81, 82]. Most common is to regularize the func-
tions [79] or to make the system finite by a complex coordinate
transformation [81, 82]. It is the merit of Sauvan and Lalanne
to reinvent the latter method for applications in nanophotonics
and to formalize it in the framework of the theory of perfectly-
matched layers [3, 94]: an infinite system can be mapped via
a complex-valued coordinate transformation to an equivalent
finite system, in which there is no divergence of fields at the
boundaries if all parameters are chosen appropriately. This
is equivalent to surrounding a given geometry by perfectly-
matched layers [125], which is therefore the most common
implementation of this normalization in numerical calcula-
tions. Mathematically, the resulting normalization can be writ-
ten for ζ = ξ = 0 as:

ˆ

Ṽ

dV

[
Ẽn ·

∂ωε̃

∂ω

∣∣∣∣
ωn

Ẽn− H̃n ·
∂ωµ̃

∂ω

∣∣∣∣
ωn

H̃n

]
= 1, (35)

where Ṽ denotes a finite volume including the region of the
perfectly-matched layers. While this approach is rather ver-
satile, it is a bit problematic that the important fact that Ṽ
is not the entire infinite space often just shows up as a foot-
note. Hence, equation (35)makes the impression of a divergent

integral. Moreover, the fields inside the region of perfectly-
matched layers are related to the original fields in real space
only by the corresponding complex coordinate transforma-
tion, and the original permittivity and permeability have to be
replaced there by those artificial quantities of the perfectly-
matched layers, see supplementary material of [3]. That is why
we have added a tilde on top of the fields and material para-
meters in equation (35). Finally, the selection of appropriate
parameters for the perfectly-matched layers can be rather del-
icate in some cases. Therefore, it has to be carefully checked
that equation (35) has converged.

Alternatively, analytic approaches for the normalization
can be formulated, in which the divergent integrals are con-
sidered in a distribution sense [126] or a surface contribution is
derived to compensate for the divergence of the volume integ-
ral, see [91] and references therein. Here, we will focus on the
latter approach, which is based on assigning the correct weight
to the residues in the Mittag-Leffler expansion of the Green’s
dyadic provided in equation (29).

So far, neither Fn nor F‡
n are defined uniquely by

equation (11) and its transposed counterpart equation (28).
Selecting the source term Sn in equation (18) such that´
V dVF

‡
n ·Sn = 1, and following the derivation steps in [91]

and references therein, we arrive at the normalization
condition:

1= Vn+ Sn, (36)

where

Vn =
ˆ

V

dVF‡
n · (ωP̂) ′Fn, (37)

Sn = ic
˛

∂V

dS
(
E‡
n×H ′

n−E ′
n×H‡

n

)
, (38)

and the prime denotes the derivative with respect to ω at
ωn. Note that equation (37) resembles the left-hand side of
equation (35) for ζ = ξ = 0, except for V being an arbitrary
volume surrounding the scattering geometry without the need
for any perfectly-matched layers. In figure 3, one can see that
the normalization as the sum of surface and volume term is
actually independent of the volume of integration, which is
highly beneficial in complex systems, where a larger computa-
tional domain increases the calculation time significantly. The
price to pay is that one needs to evaluate a field derivative in
the surface term in equation (38).

At a first glance, it seems counterintuitive that Fn as the
eigensolution of equation (11) has any frequency dependence
for calculating the field derivative. In fact, one needs to con-
sider equation (18) in the limit ω→ ωn. Applying equation (8)
in equation (18) and inserting the Green’s dyadic expansion
from equation (29), we obtain:

F(r;ω) =
∑
m

ω−ωn
ω−ωm

Fm(r)
ˆ
dV ′F‡

m(r
′) ·Sn(r ′). (39)

This is the starting point for defining the derivative F ′
n. How-

ever, some additional steps are necessary to obtain the final

8



Semicond. Sci. Technol. 37 (2022) 013002 Topical Review

Figure 3. Independence of the analytic normalization on the
volume of integration demonstrated for a one-dimensional photonic
crystal slab. The geometry is depicted in (a), with ∆V being the
extension of the volume of normalization into the substrate and V0

as the minimum volume of normalization. The electric-field
magnitude of a fundamental transverse-electric (TE) mode at an
in-plane momentum of kx = 5.236 µm−1 is displayed in (b). In
panel (c), we can see the dependence of the volume term (black
solid line) of this mode on the volume of normalization. It is evident
that the magnitude of the volume term grows exponentially.
However, the sum of the change of volume and surface term (red
solid line) remains constant within the accuracy of our numerical
method [12, 127, 128]. Reprinted figure with permission from [12],
Copyright (2017) by the American Physical Society.

result. Wemay be tempted to consider equation (39) as an ana-
lytic continuation of Fn to the complex frequency plane and
simply calculate F ′

n via the derivative of F with respect to ω at
ωn. However, this results in an expression that depends on all
RS and the specific form of Sn. Moreover, as discussed later,
it is questionable if such an expansion is valid everywhere in
the external surrounding.

Instead, we have to show that we can define F ′
n such that

it does not depend on other RS and the precise form of Sn.
We are deriving here a more general proof than in [11, 12],
which starts with the separation of equation (18) into back-
ground material P̂BG and resonator contribution ∆P̂:

M̂BGF=−ω
c
∆P̂F+

ω−ωn
c

Sn. (40)

Here, we have introduced the Maxwell operator of the back-
ground system as:

M̂BG =
ω

c
P̂BG − D̂. (41)

Let us assume that we know theGreen’s dyadic Ĝ0 of the back-
ground system, which allows us to reformulate equation (40)
via equation (8) as:

F=

ˆ

V

dVĜ0

(
−ω
c
∆P̂F+

ω−ωn
c

Sn
)
. (42)

If Sn = 0, this formulation is equivalent to the regularized res-
onant fields in [4].

Expanding F, Ĝ0, and ω∆P̂ into Taylor series around ωn
and sorting in powers of ω−ωn yields in the zeroth order
equation (11), while the first-order correction is:

F ′ =−ωn
c

ˆ

V

dVĜ ′
0∆P̂(ωn)Fn

+
1
c

ˆ

V

dVĜ0

[
Sn− (ω∆P̂) ′Fn−ωn∆P̂(ωn)F ′

]
. (43)

The second line contains only sources located inside the reson-
ator, so that it yields purely outgoing fields outside the reson-
ator. Hence, we infer from the condition given by equation (27)
that the fields generated by this source do not contribute to the
surface integral in equation (38). The first line, however, con-
tains the derivative Ĝ ′

0 instead of the Green’s dyadic, so that
we must assume that this results in a nonvanishing contribu-
tion to equation (38). Therefore, we may define F ′

n via:

F ′
n =−ωn

c

ˆ

V

dVĜ ′
0∆P̂(ωn)Fn, (44)

which is solely given by the underlying differential equation
and the corresponding resonant field distribution Fn.

Of course, it is not very practical to calculate F ′
n via

equation (44), because we need to know Ĝ0. However, the
above considerations at least tell us that F ′

n does not depend
on the selection of the source Sn in the derivation of the nor-
malization. Hence, F ′

n is a quantity that is uniquely defined by
the resonant state.

In practical calculations, we need to find suitable ways to
derive F ′

n in the exterior surrounding of the resonator geo-
metry. If the surrounding is rather trivial with a known set
of basis functions, any field distribution generated by sources
inside the resonator can be expanded in terms of the subset of
outgoing basis functions ON of the surrounding system [13].
Here, N is a vector that summarizes all labels to distinguish
the outgoing basis functions. Thus, equation (39) can be writ-
ten as:

F(r;ω) =
∑
m

ω−ωn
ω−ωm

∑
N

α
(m)
N (ω)ON(r;ω)Imn, (45)

where Imn =
´
dV ′F‡

m(r
′) · Sn(r ′) with Inn = 1 by definition,

and α(m)
N is the frequency-dependent expansion coefficient of

the resonant state with field Fm.
If we now differentiate equation (45) with respect to ω at

ωn, we already know that all other modes with index m ̸= n

9
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must not contribute to F ′
n. The only question is about the con-

tribution of the terms (α(n)
N ) ′ON, where the prime denotes the

frequency derivative of the expansion coefficient at frequency
ωn. Since this part is proportional toON at ωn, we obtain from
equation (27) that it must not contribute to equation (38) either.
Hence, we can calculate F ′

n in equation (38) via:

F ′
n(r) =

∑
N

α
(n)
N (ωn)O ′

N(r), (46)

where O ′
N is the frequency derivative of ON at ωn. This

approach for calculating F ′
n has been used, e.g. for normal-

izing RS in planar periodic system [11, 12]. For isolated nano-
structures in a homogeneous and isotropic surrounding, it is
possible to convert the frequency derivative into a spatial
derivative [1, 7, 91], which simplifies the calculation of F ′

n
significantly.

It should be mentioned that in earlier works on analytic
normalizations with surface terms, the starting point was
the wave equation instead of the curl Maxwell’s equations
[1, 5–7, 11, 12, 17]. It has been shown that for nonmagnetic
materials, these normalizations are equivalent to equation (36),
except for an artificial factor of

√
2 [91]. However, they cannot

be used for magnetic, bi-isotropic, and bi-anisotropic materi-
als.

Comparing the normalization via perfectly-matched layers
with the analytic normalization, the advantage of the perfectly-
matched layers is that this approach can be used for any sort
of resonator geometry. However, care has to be taken regard-
ing the proper definition of the perfectly-matched layers. If
they do not suppress back-reflection sufficiently or their dis-
cretization is not selected appropriately, the normalization via
perfectly-matched layers will provide inaccurate results. Fur-
thermore, as noted above, in systems such as planar slabs, the
definition of incoming and outgoing fields may be not straight-
forward on the complex frequency plane in the vicinity of
Rayleigh–Wood anomalies. It may then happen that certain
RS cannot be found numerically. Finally, not all numerical
methods include perfectly-matched layers. In the case of the
analytic normalization, the advantage is that we can obtain
fully analytic equations in some cases such as slabs [17] or
spheres [5]. Furthermore, it is possible to restrict the com-
putational domain to a minimal volume surrounding the res-
onator. The main requirement is that the fields are calculated
accurately enough at the surface and in the interior. The disad-
vantage is that there is only a limited number of systems with
known surface integrals. Most importantly, the practically rel-
evant case of a single resonator on top of a substrate is yet not
solved analytically.

It should be mentioned that an alternative numerical
normalization procedure is described in [88, 129]. In this
approach, the system is driven by a source that oscillates at a
complex frequency in the vicinity of the pole at ωn. Then, it is
assumed that the resulting field distribution resembles the cor-
rectly normalized resonant stateFn multiplied by some propor-
tionality factor, which can be deduced easily. In some sense,
this can be considered as a numerical variant of assigning the
correct weight to the residues of the Green’s dyadic.

2.4. Orthogonality relation

When considering equation (11) for a mode with index n and
equation (28) for a mode with index m, we may multiply
equation (11) with F‡

m and equation (28) with Fn to obtain:

F‡
m ·

[ωn
c
P̂(ωn)−

ωm
c
P̂(ωm)

]
Fn

−F‡
m · D̂Fn+Fn · D̂F‡

m = 0. (47)

Integrating over a volume V and using the vector identities in
equation (22) results in the following orthogonality relation:

ˆ

V

dVF‡
m ·

[
ωnP̂(ωn)−ωmP̂(ωm)

]
Fn

− ic
˛

∂V

dS · (E‡
m×Hn−En×H‡

m) = 0. (48)

Similar expressions are given in [5] for non-dispersive and
non-magnetic systems. In the case that we enclose the system
by perfectly-matched layers, one may argue that the surface
integral vanishes at the outermost interfaces of the perfectly-
matched layers, resulting in the following orthogonality rela-
tion [94]:

ˆ

Ṽ

dVF̃‡
m ·

[
ωnP̃(ωn)−ωmP̃(ωm)

]
F̃n = 0. (49)

2.5. Near-field expansion

Using equation (29) in equation (8), it is possible to con-
struct the Green’s dyadic, and, thus, the fields generated by
an internal source:

F(r;ω) = c
∑
n

Fn(r)
ω−ωn

ˆ
dV ′F‡

n(r
′) · J(r ′;ω). (50)

This yields a suitable near-field expansion for local sources
that can be used in many practical applications [3, 7, 94].
Often, one is, however, not interested in the field that is gener-
ated by a local source J, but in the scattered field that is gen-
erated by a given incident field. Following the derivations of
[106], we now derive an expression for this scattered field.

Let us consider a region in space that is free of sources, i.e.
the right-hand side of equation (2) is zero. In that case, the
electromagnetic fields usually consist of incoming and outgo-
ing parts. As described in [13, 94], we first separate the total
system into a background system with material distribution
P̂BG and a local material change∆P̂= P̂− P̂BG for the reson-
ator, see equation (14). Then an arbitrary incoming field IBG

may be regarded as the incoming part of a background field
FBG = IBG +OBG, where OBG is the corresponding outgoing
field. The background field FBG is a solution of the following
Maxwell’s equations:

M̂BG(r;ω)FBG(r;ω) = 0. (51)

10



Semicond. Sci. Technol. 37 (2022) 013002 Topical Review

Here, M̂BG is the Maxwell operator of the background sys-
tem, see equation (41). Thus, the total field supervector can be
expressed as a superposition of the background and a scattered
field as Ftot = FBG +Fscat. Although it is common to consider
homogeneous and isotropic background material distributions
P̂BG, it is as well possible to introduce more complex back-
ground systems such as planar interfaces between two mater-
ials to account, e.g. for the presence of substrates. After some
algebra, we obtain [13, 94]:

M̂(r;ω)Fscat(r;ω) =−ω
c
∆P̂(r;ω)FBG(r;ω). (52)

The right-hand side can be interpreted as an internal source for
the scattered field, which allows us to construct the total field
via equation (50) as [106]:

Ftot(r;ω) = FBG(r;ω)−
∑
n

In(ω)
ω−ωn

Fn(r), (53)

where we have introduced the overlap integral In as:

In(ω) = ω

ˆ
dVF‡

n(r) ·∆P̂(r;ω)FBG(r;ω). (54)

The pole expansion of the total field given by equation (53)
is broadly used as a semi-analytical method to expand
the near fields for a given resonator system [13, 88, 94].
However, it has been noted that such an expansion is not
unique [94, 106, 117, 130, 131]. For instance, several formu-
lations are benchmarked numerically for Lorentz-dispersive
materials [131], and a whole family of possible expansions
with different frequency-dependent weight functions is dis-
cussed in [117]. Unger and coworkers suggest an independ-
ent expansion of electric and magnetic fields [130], which
provides more degrees of freedom and can be very efficiently
applied for certain geometries and materials with ζ = ξ = 0.

While equation (52) and most other formulations con-
tain weight functions of the poles that depend on frequency,
the work in reference [106] provides an alternative formula-
tion with constant weight functions. The idea is to consider
equation (52) as a function that is analytic except for a count-
able number of poles and to apply the Mittag-Leffler theorem
once more. Care has to be taken, however, because the asymp-
totic behavior is usually more sophisticated than that of the
Green’s dyadic. This means that one has to check if the pre-
requisites for the Mittag-Leffler theorem are fulfilled. Often,
higher-order versions of the Mittag-Leffler theorem have to
be applied, i.e. p> 0 in equation (16). If the background field
is free of poles, such as in the case of a homogeneous and
isotropic background material, the pth-order Mittag-Leffler
expansion of the total field yields:

Ftot(r;ω) = Fp(r;ω)−
∑
n

In(ωn)
(ω−ωn)

Fn(r), (55)

where F0 = 0, while Fp is a polynomial of order p− 1:

Fp(r;ω) =
p−1∑
m=0

amω
m, (56)

Figure 4. Near field in a dielectric slab with refractive index n= 3.5
and thickness 1 µm in air. Panel (a) displays the analytic near field
as a function of photon energy. In panel (b), the comparison of
different formulations for the pole expansion of the near field is
shown at a photon energy of 650 meV (red dashed line in (a)): the
results on the left have been calculated via equation (53). The other
results have been obtained using equation (55) in its first- (middle)
and zeroth-order (right) formulation. From top to bottom, the
number of poles is increased from 9 over 17 to 33. The dotted lines
denote the analytic result. All approaches converge to the analytic
result, except for the zeroth-order formulation, which cannot be
applied at the top interface. Reprinted with permission from [106]
© The Optical Society.

am =
F(m)
tot (r;0)
m!

−
∑
n

In(ωn)

ωm+1
n

Fn(r). (57)

Here, F(m)
tot denotes the mth derivative of F with respect to

ω. Evidently, the pole contribution in equation (55) is much
simpler than that in equation (53), since it requires calcu-
lating the overlap integral in equation (54) only once at
the complex frequencies ωn of the poles. The drawback is
that we need to account for a more complex background.
A comparison of equation (53) with the zeroth- and first-
order version of equation (55) is displayed in figure 4 for
the example of a planar dielectric slab. It can be seen that
the zeroth-order version fails at the top interface, because
the asymptotic behavior of the total field at the top interface
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prevents the application of the zeroth-order Mittag-Leffler
expansion [106].

At the end of this subsection, we would like to sketch an
alternative derivation for the pole contribution in equation (55)
from equation (52) that does not require the pole expansion of
the Green’s dyadic and yields directly the correct normaliza-
tion. First, we multiply equation (52) from the left with F‡

n.
Then, we subtract a zero in the form Fscat · M̂‡(ωn)F‡

n, which
yields:

F‡
n ·

[ω
c
P̂(ω)− ωn

c
P̂(ωn)

]
Fscat

−F‡
n · D̂Fscat +Fscat · D̂F‡

n =−ω
c
F‡
n ·∆P̂(ω)FBG. (58)

The expression in the first line vanishes atωn. In order to obtain
finite results for the scattered field, we therefore assume that
the scattered field can be expanded as:

Fscat =−c
∑
n

bn(ω)
ω−ωn

Fn. (59)

The factor −c has been introduced for the sake of consist-
ency with the next section. By integrating over equation (58)
and using the orthogonality relation in equation (48), we then
obtain in the limit ω→ ωn:

bn(ωn) =
1
c
In(ωn)
Vn+ Sn

. (60)

The expressions Vn and Sn in the denominator are defined
in equations (37) and (38). In the case that the resonant
field distributions are normalized, their sum equals unity, see
equation (36).

This derivation resembles that of the so-called orthogon-
ality decomposition [94]. The orthogonality decomposition is
based on the assumption that the scattered field can be decom-
posed everywhere in terms of the RS F̃n when using perfectly-
matched layers. Then, the modal expansion is introduced as
Fscat =

∑
n an(ω)F̃n, and an integral over equation (58) is car-

ried out that spans over the entire space Ṽ with perfectly-
matched layers, so that any occurring surface integrals vanish
in that limit. Then, one obtains a matrix operator that needs
to be regularized for dispersive media and inverted in order to
calculate the coefficients an [3]. However, it turns out that such
an expansion is only appropriate if we add numerical solutions
to the set of RS that are predominantly localized in the region
of perfectly-matched layer and do not have any physical coun-
terpart in a system without perfectly-matched layers [10].

2.6. Completeness

The question arises if any of the aforementioned modal expan-
sions converges properly and what are the limitations. Most
importantly, is the basis of RS actually complete? Regard-
ing the spatial domain of completeness, it is obvious that
equation (50) cannot be correct over the entire space. The
reason is that fields generated by a local source at a real-valued
frequency remain in general finite—particularly far away from
the source. However, the resonant field distributions grow

with distance to the resonator. The attempt of expressing a
finite field by using only exponentially growing functions is
condemned to fail. Kristensen and coworkers identify a so-
called region of consistency in the vicinity of the resonator, in
which the expansion in terms of RS gives reasonably accurate
results [95], but strictly speaking, the pole expansion of the
Green’s dyadic in equation (29) is only valid inside the res-
onator and at its outermost interfaces. When using perfectly-
matched layers, the non-physical modes that are localized in
the regions of perfectly-matched layers have to be included to
ensure completeness [10].

Another question is that of the completeness in the interior.
While the closure relation given by equation (30) yields the
necessary condition for a complete basis, the sum rules in
equation (32) indicate that the basis of RS can be overcom-
plete. This fact was already noted in the context of RS in
quantum mechanics [96, 132]. An open question in this con-
text is the completeness in the presence of exceptional points,
where we find fewer linear independent resonant field distri-
butions than eigenfrequencies.

It should be also mentioned that there is often another con-
tribution to the pole expansion of the Green’s dyadic. More
specifically, the analytic continuation of the Green’s dyadic
to the complex frequency plane may contain cuts that arise,
e.g. due to selecting appropriate Riemann sheets in the case
of complex square roots [83, 105]. In this general case, the
Green’s dyadic can be expanded as [12, 83, 87]:

Ĝ(r,r ′;ω) = c
∑
n

Fn(r)⊗F‡
n(r

′)

ω−ωn
+
∑
m

Ĝm(r,r ′;ω), (61)

where m labels the individual cut contributions with:

Ĝm(r,r ′;ω) =
1
2πi

ˆ

Cm

dω ′∆Ĝ(r,r ′;ω ′)

ω−ω ′ , (62)

with Cm denoting a path along the mth cut and ∆Ĝ being
the difference between the Green’s dyadic on the different
Riemann sheets. In numerical calculations, these cut contri-
butions can be discretized [87], and single cuts can be circum-
vented by using analytic continuations over other parameters
than complex frequency [17, 105]. Furthermore, in systems
surrounded by perfectly-matched layers, these cut contribu-
tions disappear and are replaced by a bunch of numerical
modes [10, 94]. However, a general analytical treatment of
arbitrary cut contributions is still to be developed.

Finally, there is another issue arising due to the discontinu-
ities of the electric andmagnetic fields.Whenever it is required
to expand quantities with discontinuities by basis functions
that exhibit no appropriate discontinuities, the convergence of
this expansion will suffer from the Gibbs phenomenon, which
is well-understood in the framework of numerical calcula-
tions via the Fourier-modal method [133–136]. When using
RS as basis, a possible solution is to include so-called static
modes [98], which are not solutions of Maxwell’s equations
in a physical sense. This aspect will be discussed later in
section 3.1.
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2.7. Far-field expansion

In the following, we show how the optical far-field response
of a resonator can be calculated from its RS. Owing to its
high practical relevance, we focus on the calculation of the
optical scattering matrix [9, 13, 21–23]; however, the presen-
ted approach can also be extended to other quantities, such
as the radiation diagram of emitters located inside the reson-
ator [137].

Let us choose a surface ∂V that surrounds the resonator. On
this surface, one can construct complete and orthogonal sets of
incoming {IN} and outgoing {ON} basis functions [8, 13]. The
vector N is the same as introduced in section 2.3 and summar-
izes all labels needed to specify the basis functions (e.g. their
polarization and propagation direction). Every incoming basis
function IN has an outgoing counterpart ON. With the help of
the basis functions, an arbitrary field F can be decomposed as:

F(r;ω) =
∑
N

αin
N(ω)IN(r;ω)+αout

N (ω)ON(r;ω), (63)

where αin
N and αout

N denote expansion coefficients on the sur-
face ∂V.

The basis functions IN = (Ein,N; iHin,N)
T and ON =

(Eout,N; iHout,N)
T can be chosen such that they fulfill the fol-

lowing orthogonality relations [13]:

i
˛

∂V

dS · (E‡
in,N ×Hout,M −Eout,M ×H‡

in,N) = δNM, (64)

i
˛

∂V

dS · (Ein,N ×H‡
out,M −E‡

out,M ×Hin,N) = δNM, (65)

i
˛

∂V

dS · (E‡
in,N ×Hin,M −Ein,M ×H‡

in,N) = 0, (66)

i
˛

∂V

dS · (E‡
out,N ×Hout,M −Eout,M ×H‡

out,N) = 0. (67)

Consequently, the expansion coefficients in equation (63)
become:

αin
N =−i

˛

∂V

dS · (E‡
out,N ×H−E×H‡

out,N), (68)

αout
N = i

˛

∂V

dS · (E‡
in,N ×H−E×H‡

in,N). (69)

Note that a missing minus sign from [13] is corrected for in
equation (68). Also, we would like to mention that the nor-
malized resonant field distributionsFn have units m−3/2, while
equations (64) and (65) imply that IN andOM have units m−1.
For the sake of consistency, we assume now that all fields
except Fn are given in units m−1. The results can be translated
to any other units by multiplying the fields with an appropriate
factor.

The interaction of a resonator with incoming and outgoing
basis functions can be summarized in its scattering matrix S.
For an arbitrary incident field, written as F(in) =

∑
Nα

in
NIN, the

response of the resonator, written as F(out) =
∑

Nα
out
N ON, is

given by:

αout
M =

∑
N

SMNα
in
N , (70)

where SMN denote the corresponding elements of the scatter-
ing matrix. It should be mentioned that in the context of the
scattering matrix, the indices M and N are often referred to as
channels.

Let us now calculate the elements SMN. We assume that the
resonator is excited via a basis function IN(ω). This generates
the following fields:

Ftot,N(ω) = FBG,N(ω)+Fscat,N(ω). (71)

The elements SMN are then obtained by applying equation (69)
for the channel M to equation (71). This yields:

SMN(ω) = SBG
MN(ω)+ SscatMN(ω), (72)

with the scattering matrix of the background system:

SBG
MN(ω) = i

˛

∂V

dS ·
[
E‡

in,M(ω)×HBG,N(ω)

−EBG,N(ω)×H‡
in,M(ω)

]
, (73)

which only contains fields that are assumed to be known and
can directly be calculated, and a contribution:

SscatMN(ω) = i
˛

∂V

dS ·
[
E‡

in,M(ω)×Hscat,N(ω)

−Escat,N(ω)×H‡
in,M(ω)

]
, (74)

which contains the yet unknown scattered field and will be
evaluated in the following. We will present two alternative
approaches for this evaluation, resulting in two alternative rep-
resentations of the scattering matrix.

2.7.1. Asymmetric representation. We start with
equation (74), use the expansion of the scattered field given
by equation (59), and insert the result back into equation (72).
This yields the following expansion of the scattering mat-
rix [13]:

SMN(ω) = SBG
MN(ω)− c

∑
n

α
(n)
M (ω)b(n)N (ω)

ω−ωn
. (75)

In this case, the weight function of each pole contribution is
frequency-dependent, with:

α
(n)
M (ω) = i

˛

∂V

dS ·
[
E‡

in,M(ω)×Hn−En×H‡
in,M(ω)

]
, (76)
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and

b(n)N (ω) =
ω

c

ˆ

V

dVF‡
n ·∆P̂(ω)FBG,N(ω). (77)

Here, α(n)
M and b(n)N can be interpreted as the emission and

excitation coefficients of resonant state Fn, respectively. The
Greek letter α(n)

M is used in contrast to the Latin letter b(n)N (ω),
to emphasize that the former contains a surface integral, while
the latter contains a volume integral. Owing to this asymmetry,
we refer to equation (75) as the asymmetric representation.

2.7.2. Symmetric representation. We take equation (74) and
replace I‡M with the background field F‡

BG,M that it would gen-
erate when being launched into the resonator. One can easily
verify that this replacement is possible by noting that on the
surface ∂V, Fscat,N is a superposition of outgoing basis func-
tions, whileF‡

BG,M is a superposition of I‡M with some outgoing
basis functions, and further using the orthogonality relations
from equations (65) and (67). Then, we apply equation (22) to
convert the surface integral into a volume integral. After some
algebra [138], this gives:

SscatMN(ω)=−ω
c

ˆ

V

dV
[
F‡
BG,M(ω)·∆P̂(ω)Ftot,N(ω)

]
. (78)

Here, Ftot,N is the sum of background and scattered field
of channel N, see equation (71). Applying the expansion
of the scattered field as formulated in equation (59) into
equation (78), and inserting the result back into equation (72)
yields the following alternative formulation of the scattering
matrix [22, 138]:

SMN(ω) = SBG
MN(ω)+ SBorn

MN (ω)+c
∑
n

a(n)M (ω)b(n)N (ω)

ω−ωn
. (79)

Comparing this result with equation (75), we note the addi-
tional background term:

SBorn
MN (ω) =−ω

c

ˆ

V

dVF‡
BG,M(ω)·∆P̂(ω)FBG,N(ω), (80)

and the modified numerator with b(n)M (ω) known from
equation (77) and,

a(n)M (ω) =
ω

c

ˆ

V

dVF‡
BG,M(ω)·∆P̂(ω)Fn. (81)

Since equation (79) contains emission and excitation coeffi-
cients a(n)M and b(n)M , respectively, that are both defined via
volume integrals, we refer to it as the symmetric representa-
tion. In contrast to the asymmetric representation, it contains
the additional term SBorn

MN , which comprises an overlap integral
between the two background fields and can be interpreted as
a Born-like scattering interaction [22]. In [22], an alternative
derivation of the symmetric representation is provided, which

is based on the orthogonality-decomposition approach [94].
In this work, it is claimed that the asymmetric representation
derived in [13] is incomplete. This appears, however, to be a
misinterpretation, since, as shown above, both representations
are equally valid and can be converted from one to the other.
Furthermore, it should bementioned that, instead of expanding
only Fscat inside the resonator in terms of the RSwhile keeping
FBG as it is, one can also expand the total field Ftot, leading to
a third and equally valid scattering-matrix representation [9].

2.7.3. Simplified ω dependence. All scattering-matrix
expansions discussed so far have the drawback that they con-
tain ω-dependent overlap integrals. This may slow down prac-
tical computations, since the integrals have to be evaluated
repeatedly. In analogy to the near-field case, the ω depend-
ence can be removed by considering SMN(ω) as a function that
is analytic in ω, except for a countable number of poles, and
applying the Mittag-Leffler theorem once more. Note that, as
in the near-field case, the prerequisites have to be checked,
especially regarding the asymptotic behavior of SMN(ω) for
ω→∞. In some situations, such as that of the analytic Mie
theory [139], the requirement on this asymptotic behavior is
not fulfilled in the conventional definition of the scattering
matrix. However, it is possible to apply the Mittag-Leffler
theorem, if one performs a regularization for the scattering
matrix beforehand [140].

We will now show the application of the Mittag-Leffler
theorem for the example of the asymmetric representation
from equation (75). An analogous procedure can be applied
to the other formulations (a detailed discussion for the case
of the symmetric formulation, e.g. can be found in [22]). We
start with equation (75) and apply the Mittag-Leffler theorem.
Then, we replace the volume integral in equation (77) via
simple algebra by a surface integral using [13]:

b(n)N (ωn) = β
(n)
N (ωn), (82)

with

β
(n)
N (ω) = i

˛

∂V

dS ·
[
E‡
n(ω)×Hin,N −Ein,N ×H‡

n(ω)
]
. (83)

Assuming a resonance-free background system, this gives
(compare equations (55)–(57) for the near-field case) [13]:

SMN(ω) = SpMN(ω)− c
∑
n

α
(n)
M (ωn)β

(n)
N (ωn)

ω−ωn
, (84)

where S0MN = 0, while S(p)MN is a polynomial of order p− 1:

SpMN(ω) =

p−1∑
m=0

A(m)
MNω

m, (85)

with matrix coefficients:

A(m)
MN =

S(m)MN(0)
m!

− c
∑
n

α
(n)
M (ωn)β

(n)
N (ωn)

ωm+1
n

. (86)
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Here, S(m)MN denotes the mth derivative of SMN with respect to
ω. The advantage of equation (84) is a highly simplified ω
dependence, where the excitation and emission coefficients
have to be evaluated only once at the complex frequencies ωn.
The price to pay is, however, that one needs to deal with a more
sophisticated background term SpMN.

In analytically solvable systems (e.g. those in [13, 22]), the
background term can be determined via its defining equation.
In numerical calculations, however, this can be difficult, espe-
cially due to the occurrence of the ω derivatives. A highly
practical approach consists in including only a small num-
ber of poles in the expansion (enough to accurately resolve
all relevant features in some spectral region of interest) and
accounting for SpMN, as well as for the influence of other poles
by some simple background polynomial, which can be fitted,
e.g. from numerically exact calculations [13]. As an alternat-
ive to the fit, one can also establish symmetry constraints for
the scattering matrix, and introduce a weighting of the coef-
ficients that minimizes the error in the expansion [21]. This
latter approach was recently refined by also taking energy con-
servation into account [23]. For single RS, this regularization
can be achieved even analytically, as shown already in 2005
by Gippius et al [141]. Another alternative in order to account
for the influence of such a background as well as for that
of remaining poles consists in the use of a Riesz-projection
method [137, 142]. An important benefit of all of the above
approaches is that they allow to accurately resolve resonant
spectral features, while at the same time keeping the computa-
tional efforts very low compared to, e.g. full numerical calcu-
lations. An interesting open question to be answered is which
method does provide the best convergence performance for
which kind of application.

Figure 5 displays the comparison of full-wave calculations
by the Fourier-modal method [127, 128] with the pole expan-
sion of the scattering matrix obtained by equation (84) for the
case of a one-dimensional photonic crystal slab. The example
is taken from [13], where four RS located at 2676.2–0.2imeV,
3180.0–92.7i meV, 3719.3–9.7i meV, and 3854.7–0.7i meV
have been considered together with a cubic fit for the back-
ground. While it can be cumbersome to resolve the sharp
resonant features in the spectra with conventional numerical
calculations, the pole expansion yields the correct spectral
behavior at low computational cost.

When looking at the spectral lineshapes in figure 5, we
can see that the resonant features not only differ in the res-
onant linewidth, but also the shape changes between the
four resonances. Taking only a single pole contribution from
equation (84), one would expect that each resonant state is
manifested as a Lorentzian in the spectra. However, the inter-
play between the various RS and the background results in the
rich diversity of spectral lineshapes. A good overview of the
classification of resonant lineshapes and their physical origin
can be found in [143]. One prominent example is that of a
Fano resonance [27, 144–147], which can be also observed
in figure 5 with the typical asymmetry due to the interplay
between the background and the resonant contribution. Fano
lineshapes arise due to the coupling of a continuum with a

Figure 5. Pole expansion of the transmittance (orange), reflectance
(blue), and absorbance (black) for p-polarized incidence at
kx = ky = 0.2 µm−1 in the case of a one-dimensional photonic
crystal slab. Numerically exact results are shown by dots, while the
pole expansion with four RS and a cubic background fit is given by
solid lines. The real part of the complex eigenfrequencies is
indicated by the gray triangles at the top. Reprinted figure with
permission from [13], Copyright (2018) by the American Physical
Society.

single resonant state or the coupling of a broad optically act-
ive resonant state and a resonant state that is optically inact-
ive [143]. A special case for Fano resonances is that of electro-
magnetically induced transparency, which occurs in the weak
coupling regime between two RS with identical real parts of
the eigenfrequencies [143, 148–150].

3. Applications

3.1. Resonant-state expansion

One of the first applications of the analytic mode normaliz-
ation of RS was the resonant-state expansion as a perturbat-
ive method up to any orders of perturbation [1]. The starting
point is a system with material distribution P̂0 that exhibits a
known set of RS with eigenfrequencies ωn and field distribu-
tions Fn, which will be used as basis functions. Then, we con-
sider a perturbed system with material distribution P̂0 + δP̂,
where δP̂ denotes the perturbation. Substituting this material
distribution into equation (11), we obtain for the new RS Fν

of the perturbed system with eigenfrequencies ων :

M̂0(r;ων)Fν(r) =−ων

c
δP̂(r;ων)Fν(r). (87)

Here, M̂0 = kP̂0 − D̂ is the Maxwell operator of the unper-
turbed system. Knowing the pole expansion of its Green’s
dyadic according to equation (29) and assuming that δP̂
is sufficiently localized to warrant the validity of this pole
expansion, we can thus formally invert equation (87) and
write [1, 91]:
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Fν(r) =
∑
n

−ωνFn(r)
ων −ωn

ˆ

V

dV ′F‡
n(r

′) · δP̂(r ′;ων)Fν(r ′).

(88)

Finally, we expressFν asFν =
∑

n bnFn and insert this on both
sides of equation (88). Since the result must be valid at any
position r and independently of δP̂, this yields:

(ων −ωn)bn =−ων

∑
m

Vnm(ων)bm, (89)

where

Vnm(ων) =

ˆ

V

dV ′F‡
n(r

′) · δP̂(r ′;ων)Fm(r ′). (90)

If δP̂ is non-dispersive, i.e. it does not depend on ω, we thus
obtain a general linear eigenvalue problem in the form of
equation (89), which is the resonant-state expansion in its
simplest form.

Assuming instead a perturbation of a general Drude–
Lorentz from as in equation (31), with:

δP̂(r;ω) = δP̂∞(r)+
∑
j

δQ̂j(r)
ω−Ωj

, (91)

we can obtain after some algebra the dispersive formulation of
the resonant-state expansion [91]:

(ων −ωn)bn =−ων

∑
m

Vnm(∞)bm

+ωn
∑
m

[Vnm(∞)−Vnm(ωn)]bm. (92)

It should be noted that both the dispersive and the non-
dispersive resonant-state expansion have been initially derived
for non-magnetic systems [1, 6]. In that case, the perturbation
is solely given by a change δε in the permittivity. It has been
first demonstrated for perturbations of a dielectric slab and a
microsphere [1, 5, 16]. Later, it has been extended to dielec-
tric cylinders [87] and microcavities [20] as well as one- and
two-dimensional periodic arrays [12]. The first dispersive for-
mulation is given in [6], where the RS of a dielectric sphere
have been used to calculate the RS of a gold sphere. This is
highly beneficial, because calculating the RS of a dielectric
sphere turns out to be much simpler than finding all relevant
RS of a metallic sphere.

As discussed above in section 2.6, there is another possible
contribution to the Green’s dyadic, which is cuts in the com-
plex frequency plane. In [17], these cut contributions are cir-
cumvented in a dielectric slab by considering the wavevector
component kz perpendicular to the slab as new variable for
an analytic continuation to the complex plane instead of the
frequency. In that case, the exact coefficients of transmission
and reflection contain the frequency under a square root, see
equation (15), which leads to the cut contributions, while the
dependence on kz is unambiguous and free of cuts. In other
publications, the continuous frequency dependence of the cuts

Figure 6. Resonant-state expansion for constructing the RS of a
one-dimensional periodic modulated slab of thickness 2b= a and
period d= 2πa/5 from those of a homogeneous and isotropic slab
of thickness 2 a in air. The permittivity modulation of the periodic
system is sinusoidal with an amplitude of ±1; the background
permittivity is ε= 6. The top panel depicts a schematic of the
system, while the bottom panel displays the complex
eigenfrequencies of the perturbed and unperturbed system. Large
and small black dots are the basis resonant states (RSs) and cut
poles, respectively, while the blue squares denote the RS of the
perturbed system. The results of resonant-state expansion with basis
cut poles (red pluses) agrees better with the exact results of the
perturbed system than those without cuts (green crosses) for the
same number of Bragg harmonics (M= 5) and yields perturbed cut
poles (red dots). Reprinted figure with permission from [66],
Copyright (2018) by the American Physical Society.

given in equation (62) is discretized in the form of a finite
set of equivalent cut poles [65, 66, 83, 87]. For instance, the
Muljarov group has shown recently that it is even possible to
construct the RS of one-dimensional periodic arrays from the
RS of a dielectric slab [65, 66], see figure 6. The discretized
cuts are denoted by small dots. In the case that the cuts are
far enough away from the spectral region of interest, they can
be often ignored completely. Using this formalism, Neale and
Muljarov investigated the occurrence of symmetry-protected
and accidental bound states in the continuum and developed a
criterion for distinguishing them: Symmetry-protected bound
states in the continuum can be understood as a superposition
of slab modes that do not radiate to the far field, while acci-
dental bound states in the continuum arise as a superposition
of several radiative slab modes such that the radiation to the
far field is canceled out.

Another issue that has been mentioned in section 3.1 is that
there exists a set of solutions of equation (11) at ωn = 0, which
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are not physical solutions of Maxwell’s equations. Instead,
these solutions obey [98, 151]:

∇×Eλ = 0, (93)

∇×Hλ = 0. (94)

These equations are completely independent, so that we can
derive two subclasses of static modes [151]:

ELE
λ =−∇ψLE

λ , HLE
λ = 0, (95)

HLM
λ =−∇ψLM

λ , ELM
λ = 0. (96)

Here, ψLE
λ and ψLM

λ are the potentials of longitudinal electric
(LE) and longitudinalmagnetic (LM) staticmodes. Since these
modes are no solutions of the divergence equations:

∇· (εE+ ξH) = 0, (97)

∇· (ζE+µH) = 0, (98)

they do not necessarily obey Maxwell’s boundary condi-
tions for fields at interfaces between two materials. Therefore,
adding the static modes as poles at ω= 0 to the expansion of
the Green’s dyadic in equations (29) or (61) can result in a
much better convergence of the resonant-state expansion in the
case that the boundary conditions change between the initial
and the perturbed system [98, 151]. For instance, it is shown
in [98] how to derive the RS of a cylindrical disk from those
of a spherical resonator. The static modes are normalized by
the condition Vn = 1, where Vn is defined in equation (37) and
the integration is taken over the entire space. Furthermore, it is
shown in [151] how to eliminate static modes in the expansion
of the Green’s dyadic at the cost of an additional δ function.
However, it should be noted that static modes have been con-
sidered so far only for dielectric systems.

3.2. First-order perturbation theory and sensing

In recent times, sensing has become one of the key applications
of nanophotonics [24, 32–34, 152–155]. Here, one is typically
interested in detecting tiny changes in some nanophotonic sys-
tem that are induced by the presence of an analyte medium.
For the theoretical description of such interactions, it is highly
useful to treat these changes via a first-order perturbation the-
ory [5, 11, 12, 14, 26, 27, 138]. First, this approach is very
efficient from a computational point of view. Second, it can
provide deep intuitive insights into the heart of the interaction,
which are, e.g. useful for sensor design and optimization.

In the first part of this of this subsection, we focus on
perturbation-induced frequency shifts, which denote the basis
for a large number of sensing schemes. In the second part, we
go one step further, and consider the impact of perturbations
onto optical far-field properties, represented by the optical

scattering matrix. Note that we consider here only material
changes, as they are relevant in sensing, but do not dis-
cuss shape deformations of the resonator, which may require
another type of perturbation theory to be treated in a similar
manner [151, 156, 157]

Let us now develop an expression for the change in the
eigenfrequencies ωn of a resonator under weak changes of its
material distribution. In principle, the result is already con-
tained in the resonant-state expansion from the previous sub-
section. One can simply take the eigenvalue equations of the
resonant-state expansion and apply a first-order approxima-
tion in the perturbation δP̂, resulting in a simple closed-form
expression for the change of ωn [5, 11, 12, 20, 26]. How-
ever, this approach is restricted to perturbations inside or in
the vicinity of the resonator. In order to be more general,
we show here the derivations from [14], which additionally
allow to account for the case that the perturbation δP̂ includes
homogeneous and isotropic perturbations in the resonator’s
surrounding.

First, the RS of the perturbed system obey the following
equation: [

M̂0(r;ων)+Λ
ων

c
δP̂(r;ων)

]
Fν = 0. (99)

Here, M̂0 is the Maxwell operator of the unperturbed system,
ων is the perturbed resonance frequency, and Fν the corres-
ponding field distribution. In analogy to conventional perturb-
ation theories (e.g. known from quantum mechanics [158]),
we introduce the perturbation parameter Λ, which is assumed
to be small. From a conceptual standpoint, however, we can
turn the perturbation on (Λ = 1) or off (Λ = 0).

Multiplying equation (99) with F‡
n and subtracting Fν

times equation (28) of the unperturbed system, we obtain via
equation (22):

ˆ

V

dVF‡
n ·

[
ων P̂(ων)−ωnP̂(ωn)

]
Fν

+Λων

ˆ

V

dVF‡
n · δP̂(ων)Fν

+ ic
˛

∂V

dS · (E‡
n×Hν −Eν ×H‡

n) = 0. (100)

Then, we assume that the perturbation is small and expand all
quantities as perturbation series in powers of Λ:

Fν = Fn+ΛF(1)
n +O(Λ2), (101)

ων = ωn+Λω(1)
n +O(Λ2). (102)

When inserting these relations into equation (100) and sorting
the result by powers of Λ, it turns out that the zeroth order is
trivially fulfilled. In the first order, this yields:

ω(1)
n Vn+ωn

ˆ

V

dVF‡
n · δP̂(ωn)Fn =−S(1)n . (103)
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Here, Vn is the volume term of the normalization defined in
equation (37). For the sake of brevity of notations, we have
furthermore introduced the abbreviation:

S(1)n = ic
˛

∂V

dS · [E‡
n×H(1)

n −E(1)
n ×H‡

n], (104)

which closely resembles the surface term of the normaliza-
tion given by equation (38). However, we should in this case
replace (ω−ωn)Sn in equation (40) by −ΛωνδP̂(ων), use
equation (8) with the background Green’s dyadic Ĝ0, and sort
by powers of Λ, which allows us to express the first-order cor-
rection as:

F(1)
n = ω(1)

n F ′
n−

ωn
c

ˆ
dVĜ0δP̂(ωn)Fn. (105)

Thus, we obtain the frequency shift and linewidth change for
sensing applications, which is given by the real and imaginary
parts, respectively, of the first-order correction of the eigenfre-
quency as [14]:

ω(1)
n =−

ωn
´
V
dVF‡

n · δP̂(ωn)Fn+ δSn

Vn+ Sn
. (106)

The denominator equals unity in the case of normalized RS,
and we have introduced:

δSn = ic
˛

∂V

dS · [E‡
n× δHn− δEn×H‡

n], (107)

which equals zero in the case of perturbations localized to the
resonator [11, 12]. Equation (107) contains the abbreviations
δE and δH for the corrections of the electric and magnetic
fields respectively, which are defined as elements of the super-
vector:

δFn =−ωn
c

ˆ
dVĜ0δP̂(ωn)Fn. (108)

In the case that the perturbation is localized, the surface
term δSn in the numerator of equation (106) vanishes due to
equation (27), because it results in purely outgoing fields. An
alternative derivation for localized perturbations can be found
in [26], additionally accounting for some corrections of the
local fields.

If the perturbation is not localized, but homogeneous and
isotropic in the surrounding, we can make the same ana-
lytic continuation for the fields in the exterior as described in
section 2.3, see equation (45). However, the basis functions
ON now explicitly depend on the perturbation parameter Λ,
which allows us to calculate the related field correction as [14]:

δFn =
∑
N

α
(n)
N (ωn;Λ)

∂ON(r;ωn;Λ)
∂Λ

∣∣∣∣
Λ=0

, (109)

where α(n)
N is the same as in equation (46). In the simple

case that the perturbation in the surrounding is given by scalar

Figure 7. Perturbation theory applied to an array of plasmonic
nanoslits. Panel (a) depicts the geometry: The structure consists of a
gold layer, with the slits etched into it. The gold is sitting on a glass
substrate and is covered by an analyte solution. As a perturbation,
the permittivity of the analyte is changed. The electric-field intensity
of the fundamental plasmon mode is displayed in (b). Panel
(c) shows the resonance linewidth and energy of this mode as a
function of the analyte’s permittivity. The lines denote the results of
the perturbation theory, while the squares correspond to numerically
exact calculations. Adapted with permission from [14]
© The Optical Society.

values δε and δµ, the surface correction in equation (106) can
then be rewritten as [14]:

δSn =
ηωn
2

(
δε

ε
+
δµ

µ

)
Sn+

iηβc
2

˛

∂V

dS · (E‡
n×Hn), (110)

where ε and µ are the unperturbed values of permittivity
and permeability, respectively, η =

√
εµ/(ω

√
εµ) ′, and β =

[(ωµ) ′δε− (ωε) ′δµ]/εµ. Here, the prime denotes again the
derivative with respect to ω at ωn, as introduced in section 2.3.
For non-dispersive ε and µ, the above abbreviations simplify
to η= 1 and β = δε/ε− δµ/µ. It should be mentioned that
it is also possible to treat homogeneous and isotropic per-
turbations of the surrounding medium beyond the above first-
order approximation by using an adaption of the resonant-state
expansion, in which the perturbation is mapped onto effective
modifications in the system’s interior [159].

Figure 7 displays an example, where the perturbation the-
ory is applied to an array of plasmonic nanoslits. The example
is taken from [14]. The geometry is depicted in panel (a): The
system consists of a gold layer (height 40 nm, permittivity
from [160]), with the slits etched into it. The gold is sitting on
top of a glass substrate (n= 1.5) and is covered by an analyte
solution. The slits are 60× 400 nm2 in size and periodically
arranged with periods of 300 nm and 700 nm, respectively. As
a perturbation, the permittivity of the analyte is varied from its
initial value of 1.71. The electric-field intensity of the funda-
mental plasmonic mode is displayed in panel (b). Panel (c)
shows the linewidth and energy of this mode as a function
of the analyte’s permittivity. The lines denote the results of
the perturbation theory (i.e. equation (106)), while the squares
have been derived from numerically exact calculations. It is
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evident that there is an excellent agreement over the large
range of permittivity changes.

In sensor designs, it is often useful to quantify the sensing
capability of an individual resonant state with respect to fre-
quency shifts. For this purpose, it is very convenient to intro-
duce the following figure of merit (FOM) [27]:

FOM=
[sensitivity]× [excitation strength]

[resonance linewidth]
. (111)

The quantities in this equation can be derived from the reson-
ant state: the sensitivity is usually defined around the eigen-
frequency ωn =Ωn− iΓn as |Re(∂ωn/∂X)|, where X repres-
ents the material parameter that is varied. This expression can
directly be evaluated from equation (106). The linewidth is
known as −2Γn, and the excitation strength can be estimated
as |b(n)N (Ωn)| from equation (77). In [27] it is demonstrated and
experimentally verified how this figure of merit can be used to
optimize the geometry of a complex sensor.

So far, only the effect of the perturbation on the eigenfre-
quencies was considered rigorously. Let us now investigate
the influence of the perturbation on the scattering matrix for
local perturbations. We will see that, besides frequency shifts
and linewidth changes, there can occur further perturbation-
induced effects, that also may lead to observable signals. We
start from the total field Fpert

tot in the perturbed resonator. In
analogy to equation (99), which describes RS of the perturbed
resonator, the total field is defined via:[

M̂0(r;ω)+Λ
ω

c
δP̂(r;ω)

]
Fpert
tot (ω) = 0. (112)

We write Fpert
tot as Taylor series in Λ and note that only the

scattered field is affected by the perturbation, while the back-
ground field remains unaffected. This yields:

Fpert
tot = FBG +Fscat +ΛF(1)

scat +Λ2F(2)
scat + · · · , (113)

where FBG and Fscat denote the background and scattered
field, respectively, in the unperturbed resonator, and
F(1)
scat, F

(2)
scat, . . . are correction terms. Inserting equation (113)

into equation (112) and comparing the coefficients for every
power of Λ provides:

M̂0Fscat =−M̂0FBG (114)

M̂0F(1)
scat =−ω

c
δP̂FBG − ω

c
δP̂Fscat (115)

· · ·

This set of equations implicitly describes the scattered field
and all its correction terms. The first equation defines Fscat and
translates into the already known equation (52). The second
equation defines the first-order correction term F(1)

scat. We can

solve it with the help of the Green’s dyadic of the unperturbed
system, which results in:

F(1)
scat(ω) =−

∑
n

Fn
ω
´
dVF‡

n · δP̂(ω)FBG(ω)

ω−ωn

−
∑
n

Fn
ω
´
dVF‡

n · δP̂(ω)Fscat(ω)

ω−ωn
. (116)

Successively applying this method would allow for deriving
expressions for all higher-order correction terms F(2)

scat, . . . ;
however, since the perturbation is assumed to be small, we do
only need to consider the first order. Consequently, we write
Fpert
tot ≈FBG+Fscat+F(1)

scat.
Let us now evaluate the scattering matrix of the perturbed

system. In analogy to the calculation of the unperturbed scat-
tering matrix (see equations (71) and (72)), we assume that
the system gets excited via IN(ω). This results in the total
field Fpert

tot,N≈FBG,N+Fscat+F(1)
scat,N. The scattering matrix is

then obtained by projecting this total field onto the probe func-
tion I‡M(ω) via equation (69). One then obtains:

SpertMN(ω) = SMN(ω)+ δSMN(ω), (117)

where SMN denotes the scattering matrix of the unperturbed
system, and δSMN describes the perturbation-induced change:

δSMN(ω) = i
˛

∂V

dS ·
[
E‡

in,M(ω)×H(1)
scat,N(ω)

−E(1)
scat,N(ω)×H‡

in,M(ω)
]
. (118)

To evaluate this term, we apply a similar procedure as it
was used above to derive the symmetric representation of the
unperturbed scattering matrix (i.e. equation (79)). First, we
replace the basis function I‡M with the corresponding back-
ground field F‡

BG,M. This is possible due to analog reasons as
explained in section 2.7. Then, we use equation (22) to con-
vert the surface integral into a volume integral, and after some
algebra [138], we obtain:

δSMN(ω) =−ω
c

ˆ
dVF‡

BG,M(ω) · δP̂(ω)FBG,N(ω)

− ω

c

ˆ
dVF‡

BG,M(ω) · δP̂(ω)Fscat,N(ω)

− ω

c

ˆ
dVF‡

BG,M(ω) ·∆P̂0(ω)F(1)
scat,N(ω). (119)

Finally, we insert the expansions of Fscat and F(1)
scat (given by

equations (59) and (116), respectively), and utilize the defin-
itions of a(n)M and b(n)N (given by equations (81) and (77),
respectively). This gives the change of the scattering matrix
as [138]:

δSMN = δSnrMN+δS
ex
MN+δS

em
MN+δS

shift
MN+δS

cross
MN , (120)
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which consists of the following five contributions:

δSnrMN(ω) =−ω
c

ˆ
dVF‡

BG,M(ω) · δP̂(ω)FBG,N(ω) (121)

δSexMN(ω) = ω
∑
n

a(n)M (ω)
´
dVF‡

n · δP̂(ω)FBG,N(ω)

ω−ωn
(122)

δSemMN(ω) = ω
∑
n

b(n)N (ω)
´
dVF‡

BG,M(ω) · δP̂(ω)Fn
ω−ωn

(123)

δSshiftMN (ω) =−ωc
∑
n

a(n)M (ω)b(n)N (ω)
´
dVF‡

n · δP̂(ω)Fn
(ω−ωn)2

(124)

δScrossMN (ω) =−ωc
∑
n̸=m

a(n)M (ω)b(m)N (ω)
´
dVF‡

n · δP̂(ω)Fm
(ω−ωn)(ω−ωm)

.

(125)

Equations (120)–(125) allow to predict the change of the
scattering matrix via simple overlap integrals over the unper-
turbed fields. Each of the five contributions describes the
effect of a different perturbation-induced process onto the
scattering matrix. The first one, δSnrMN, contains the overlap
between the incoming and outgoing background fields and can
be interpreted as a nonresonant background interaction. The
second and third one, δSexMN and δSemMN, respectively, encom-
pass overlap integrals between the background fields and the
RS, and denote changes in the excitation and emission coef-
ficients, respectively. The fourth one, δSshiftMN , contains over-
lap integrals of the RS with themselves, which can be associ-
ated with their resonance frequency shiftsfor normalized fields
and localized perturbations, see equation (106). The fifth one,
δScrossMN , involves overlaps between different RS and accounts
for perturbation-induced crosstalk.

The predictions of the first-order perturbation theory are
demonstrated in figure 8 for the example of an array of gold
antennas with a length of 150 nm, a width and height of
40 nm, and a periodicity of 650 nm. The top and bottom lay-
ers are infinite half spaces of vacuum, while the layer with the
antennas contains cubic patches that are filled by water with
a refractive index of n= 1.33. The spectra and a schematic of
that system can be seen in figure 8(a). Exactly the same sys-
tem is used in [161], but for changing the material in cubic
patches at the end of the antennas from achiral to chiral. Here,
we consider a change of permittivity in the cubic patches,
which is 0.0001. The resulting transmittance changes can be
seen in figure 8(b). The red dots represent numerical results,
while the gray shaded area denotes the prediction from the
first-order perturbation theory for a single resonant state at
1591–45i meV. Additionally, we analyze the different con-
tributions, which correspond to the resonance shift (red solid
line), the changes in the excitation and emission coefficients
(blue dashed line), and the nonresonant background interac-
tion (black dotted line). Evidently, the dominant contribution
stems from the resonance shift—in contrast to chiral systems,
where the resonance shift does not contribute at all for such
achiral geometries [138].

Figure 8. Perturbation theory for rod antenna array: The
permittivity is changed in the blue regions at the end of gold
antennas (schematic in inset) by 0.0001. Panel (a) displays the
transmittance (red), reflectance (blue), and absorbance (black) at
normal incidence. The change in transmittance is shown in panel
(b), with red dots denoting exact numerical results. The gray-shaded
area denotes the approximated results obtained by first-order
perturbation theory using equations (117) and (120). Furthermore,
we plot the individual contributions to the transmittance change:
resonance shift (red solid line), excitation and emission change
(blue dashed line) and nonresonant background interaction (black
dotted line).

3.3. Purcell enhancement

Countless applications in micro- and nanophotonics
[43, 122, 162–171] exploit the interaction of dipole emitters
with resonators. The heart of this interaction is the so-called
Purcell effect, which describes the enhancement of the spon-
taneous emission rate that an emitter experiences when being
coupled to a resonator. In his famous 1946 communication
[172], Purcell stated that this enhancement is given as:

F=
6πc3Qn

ω3 Vn
, (126)

which is nowadays known as the Purcell factor. Here, ω
denotes the dipole’s oscillation frequency,Qn =Ωn/2Γn is the
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quality factor of the optical mode, and Vn represents the mode
volume. Initially, Vn was estimated as the effective volume
of the resonator. Later, this definition was refined to (see for
instance [7, 173, 174]):

Vn =

´
dVε(r)|En(r)|2

|ed ·En(rd)|2
, (127)

where En represents the modal field, ed describes the unit vec-
tor along the dipole orientation, rd represents the dipole posi-
tion, and the integration is carried out over the volume occu-
pied by the mode. Note that in consistency with [7], we ref-
erence the Purcell factor to the spontaneous emission rate in
vacuum instead of a bulk medium, as it is also common in lit-
erature. The equations for a bulk medium can be obtained by
simply including factors of 1/n3 and 1/n2 in the definition of
F and Vn, respectively, where n represents the bulk’s refractive
index.

Although equations (126) and (127) have been used for dec-
ades to describe light-matter interactions, it turns out that they
are correct only in the limit of high quality factors and negli-
gible energy leakage to the environment. The main reason is
that—as discussed in subsection 2.3—in the case of energy
leakage, the modal field distributions become exponentially
growing with distance to the resonator and the integral in
equation (127) is not applicable anymore. A first solution was
suggested byKristensen et al [2], where they introduced a gen-
eralized mode volume, based on an extension of a normaliza-
tion scheme for open resonators that had been developed in the
1990s by Leung et al [175–177]. However, while this approach
was aiming in the right direction, it was later shown that the
normalization used in [2] has a mathematical flaw (for details,
see literature debate in [7, 18, 89, 90, 92, 93]). Furthermore,
this initial work focused on the case of an emitter interacting
with only one single mode and being spectrally matched with
this one. The first correct and rigorous theory was presented by
Sauvan et al [3], based on the normalization via equation (35)
using perfectly-matched layers and an orthogonality decom-
position of the fields inside the resonator in terms of RS (for an
explanation, see section 2.4). Shortly after, the first fully ana-
lytical treatment—similar to Sauvan’s approach, but based on
the analytic mode normalization and the analytic pole expan-
sion of the Green’s dyadic—was developed by Muljarov and
Langbein [7]. In the following, we present the generaliza-
tion of Purcell’s theory to open systems, following mostly the
derivation from this latter work. Note that we remain here
in the weak-coupling regime between emitter and resonator,
where the RS are still classical quantities. However, it has
been shown by Franke et al that it is possible to quantize
the RS for describing the interaction of resonator and emitter
on the few-photon level in a quantum-mechanical framework
[178].

As shown in [2, 3, 7, 10, 18, 94, 179, 180], the correct Pur-
cell factor for open electromagnetic resonators becomes:

F(ω) =
3πc3

ω

∑
n

Im
1

Vnωn(ωn−ω)
, (128)

with the generalized mode volume Vn defined as:

Vn =
1

2[ed ·E‡
n(rd)][ed ·En(rd)]

, (129)

where En and E‡
n are normalized according to equations (36)–

(38) or an equivalently applicable method [1, 3, 5, 88, 93].
Note that in comparison to [7], we have included a factor
of 2 in order to be consistent with the normalization used in
this review (which is defined via electric and magnetic fields
instead of electric fields only), and furthermore generalized to
the case where E‡

n ̸= En.
It can be shown easily that the original Purcell factor of

equation (126) is contained in equation (128) in the limit
of high quality factors and negligible energy leakage. An
important aspect of the generalized mode volume is that it
can be complex [2, 3, 6, 94, 180], in contrast to its original
definition, in which it is a real-valued positive number. This
has two remarkable consequences (for a detailed discussion,
see [3, 94]): first, modes with Im(Vn) ̸= 0 contribute with
non-Lorentzian features to the spectral dependence of F(ω).
Second, modes with Re(Vn)< 0 provide a negative contribu-
tion to the overall enhancement.

Let us have a short excursion about the physical meaning of
the Purcell factor. There are three different viewpoints [181],
which can be summarized as:

F
(i)
=

γ

γ0

(ii)
=

ρ

ρ0

(iii)
=

P
P0
. (130)

Viewpoint (i) resembles the definition mentioned at the begin-
ning of this section, according to which F expresses the
enhancement of the spontaneous emission rate γ of a dipole
interacting with the resonator compared to its spontaneous
emission rate γ0 in vacuum. As stated by Fermi’s golden
rule [181], the spontaneous emission rate is proportional to
the partial local density of states. Consequently, viewpoint (ii)
denotes F as the increase of this density, where ρ represents
the value in the presence of the resonator, and ρ0 is the vacuum
value. This concept is especially useful when dealing with sys-
tems that contain a multitude of emitters, as it is for example
the case in [168, 169]. Concerning the physical interpretation
of ρ in open resonators, one needs, however, to be careful:
in closed cavities, the density of states can be understood as
the number of available electromagnetic modes per frequency
interval dω, in analogy to the electronic density of states in
solid-state physics. (The distinction between the density of
states and the partial local density of states simply stems from
the fact that the latter one contains an additional weighting
factor that accounts for the coupling to the emitter [94].) In
open resonators, the above interpretation breaks down. Intuit-
ively, we can understand this from the fact that the modes of
open resonators (i.e. the resonant states) have in general non-
negligible linewidths and can spectrally interfere with each
other. A detailed explanation of this matter is found in [94].
In this general case, the appropriate interpretation of ρ/ρ0 is
to associate it with the resonator-induced change of the local
electric field generated by the emitter. Closely related is view-
point (iii), which describes F as the enhancement of the power
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Figure 9. Purcell factor inside a dielectric sphere. The sphere has a
radius of a and a permittivity of ε= 4. The emitter is placed at a
distance of 0.9 a from the center and the Purcell factor is averaged
over the polarization directions. The black line displays the full
Purcell factor, while the blue line denotes the partial Purcell factor,
considering only transverse-electric (TE) modes. Reprinted figure
with permission from [7], Copyright (2016) by the American
Physical Society.

P that is radiated by a classical dipole in the presence of the res-
onator compared to the power P0 that the same dipole would
radiate in vacuum.

An example for the Purcell factor calculation in an open res-
onator is shown in figure 9, which is taken from [7]. Plotted is
F(ω) for a dielectric sphere with radius a and the permittiv-
ity ε= 4, which is surrounded by air. The emitter is assumed
to be located at a distance of 0.9 a from the center. The Pur-
cell factor is calculated via equation (128), taking into account
modes with an angular quantum number of l< 38 and eigen-
frequencies |ωn|< 40c/a, and is averaged over the polariza-
tion directions. The black line represents the full Purcell factor,
while the blue line corresponds the partial Purcell factor, con-
sidering only transverse-electric (TE) modes.

It should bementioned, that—due to the completeness issue
discussed in section 2.6—the decomposition of the Purcell
factor in terms of the resonant state is strictly speaking only
valid inside the resonator. Yet, in practise, reasonably accur-
ate predictions are also obtained for dipoles placed outside in
the vicinity of the resonator [3, 4, 18, 95]. Even at interme-
diate distances, the above decomposition might still deliver
correct results when the coupling to the free-space continuum
is accounted for via adding an additional factor [3, 4, 18] (in
the case of air this factor is 1). However, at long distances,
namelywhen the exponential growth of the RS starts to domin-
ate, even this extended approach is condemned to fail and will
predict unphysically high-values of F(ω). The problem can be
circumvented using one of the following twomethods: the first
option consists in calculating a mapped system, where the res-
onator and its surrounding are enclosed by perfectly-matched
layers, and include the non-physical perfectly-matched layer
modes in the expansion [10]. This ensures completeness in
the whole calculation domain. The second option is to use a

regularization of the modal fields in the exterior of the reson-
ator to remove the exponential growth [4, 182] (note, however,
that [4] uses the same normalization as [2], but can be also
extended to other normalization methods).

At the end, let us have a closer look at the complex mode
volume. One might think that this is purely an abstract math-
ematical construct, only meaningful because it appears in the
Purcell factor calculation. However, it turns out that Vn itself is
an observable quantity. It was predicted by Yang et al [26] that
when a tiny electrically polarizable object is placed inside (or
nearby) an optical resonator, the complex eigenfrequency ωn
of the resonator’s mode experiences a change that is approxim-
ately proportional to the value of 1/Vn at the object’s position.
Hence, by probing the real and imaginary part of this eigenfre-
quency change (recall that they are measurable via the shift in
the resonance frequency and the change in linewidth, respect-
ively), one can experimentally access the complex nature of
Vn. Such an experiment was completed by Cognée et al [19].
By moving the electrically polarizable tip of a scanning near-
field optical microscope over a photonic crystal cavity and
simultaneously recording the peak frequency and the linewidth
of the cavity’s fluorescence spectrum, they were able to con-
struct a spatially resolved map of the cavity’s inverse com-
plex mode volume. The results are displayed in figure 1(d).
The left and right plots correspond to the real and imagin-
ary part, respectively. It is evident that the experimental data
(top) coincides verywell with their numerical predictions (bot-
tom). Recently, this approach was extended to magnetic mode
volumes, i.e. the magnetic analog of equation (129) [183]. The
experimental observation of complex mode volumes consti-
tutes an important example where the theory of RS has led
to the prediction and discovery of a new phenomenon. This
clearly demonstrates that the theory is much more than only a
computational tool.

4. Related topics

4.1. Permittivity eigenmodes

While the expansion of optical properties in terms of RS is
based on an analytic continuation of this response to the com-
plex frequency plane, other forms of analytic continuation
are possible, too. One highly relevant case is that of an ana-
lytic continuation to a complex permittivity plane for a fixed
real-valued frequency. The basic idea originates in electrostat-
ics [184, 185] and has been later extended to electrodynam-
ics [186, 187].

The starting point is the wave equation for non-magnetic
materials (µ= 1), which is:

∇×∇×E− ω2

c2
ε(r;ω)E= i

4πω
c2

j. (131)

As in section 2.5, we separate the permittivity into a back-
ground part εBG, which is now assumed to be homogeneous
and isotropic, and the scattering geometry, which is given by
∆ε= (ε− εBG)Θ(r), where Θ is a Heaviside function that is
one inside and zero outside the scattering geometry. Using the
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well-known analytic form for the Green’s dyadic Ĝ0 of the
background material [188], which satisfies:(

∇×∇×−ω
2

c2
εBG

)
Ĝ0(r,r ′;ω) = Îδ(r− r ′), (132)

where Î is a 3× 3 unit matrix, it is possible to set up the fol-
lowing eigenvalue equation for j= 0 [189]:

smEm(r) =−εBG
ω2

c2

ˆ
dV ′Ĝ0(r,r ′;ω)Θ(r ′)Em(r). (133)

Here, sm is the Bergman spectral parameter:

sm =
εBG

εBG − εm
, (134)

with εm as the eigenpermittivity and Em as the correspond-
ing eigenfield. Then, all relevant quantities can be expanded
in terms of these permittivity eigenmodes. A general descrip-
tion of such expansions can be found in [189–191].

The huge advantage of the permittivity eigenmodes is that
they constitute a complete basis set, which holds not only
inside the scattering geometry, but over the entire space, and
the related eigenfields do not diverge in the exterior. Hence,
there are no problems in field expansions outside the scattering
geometry, e.g. in the case of an emitter in the exterior. There
is also no need to find an analytic continuation of the mater-
ial parameters to the complex frequency plane, because the
method considers only real frequencies, where experimental
data is available for material parameters such as the permit-
tivity. Furthermore, it is possible to describe the coupling of
two or more scattering geometries in a mode-hybridization
theory [192], which yields a simple linear eigenvalue prob-
lem for the coupling of the individual resonators. Attempts of
setting up a coupled-mode theory via RS either suffer from
inaccuracies in the far-field coupling [193–197] or involve a
nonlinear eigenvalue problem [95, 198]. For the simple case
of stacked gratings, however, an extended linear eigenvalue
problem for the RS is developed in [199].

The downside of the permittivity eigenmodes is that an
expansion of any optical properties in terms of these modes
has to be repeated for each frequency of interest. Also, it is
more difficult to grasp the physical meaning of the complex
eigenpermittivity and the related eigenfields. Finally, the ques-
tion arises about how to deal with several different materials,
because the classical formulation only includes a background
permittivity and the permittivity of the scattering geometry.

4.2. Propagating modes

In the case that the system of interest exhibits a certain trans-
lational symmetry, the complexity of that system can be math-
ematically reduced from a three-dimensional problem to a
two-dimensional problem, see [200] and references therein.
This can be achieved formally by carrying out a Fourier trans-
form in the direction of translational symmetry. For instance,
an ideal fiber or waveguide may be invariant under translations

along the z direction. Then, we can apply the Fourier
transform:

f̃(x,y;β) =
1
2π

ˆ
dz e−iβzf(x,y,z), (135)

which transforms Maxwell’s equations from equation (2) to:

M̃(x,y;β;ω)F̃(x,y;β;ω) = J̃(x,y;β;ω), (136)

where M̃ originates from the Maxwell operator M̂ in
equation (2) by the substitution ∂z → iβ [84]. Historically,
this Fourier transformation is mostly applied to the wave
equation [201].

Fixing the frequency to a real value, we can then make an
analytic continuation of equation (136) to the complexβ plane.
The related Green’s dyadic G̃ exhibits poles at complex β val-
ues, which we can relate to so-called propagating modes that
obey the following constitutive equation with outgoing bound-
ary conditions:

M̃(x,y;βn;ω)F̃n(x,y;ω) = 0. (137)

As in the case of RS, it is then possible to expand the optical
response in the basis of these propagating modes. From a
physical perspective, propagating modes constitute solutions
of Maxwell’s equations in real space with a field distribution:

Fn(x,y,z;ω) = F̃n(x,y;ω)eiβnz, (138)

which propagates along the z direction with only a change in
phase that is governed by the real part of βn and an exponen-
tial decay that stems from the imaginary part of βn. In many
cases, such as conventional step-index fibers [201], the domin-
ant propagating modes exhibit a real-valued eigenvalue βn, so
that their fields are bound to a localized high-index region and
decay perpendicular to the z axis with distance to this central
region. These propagating modes are called ‘bound modes,’
with a normalization similar to equation (34). However, there
are also solutions with a nonzero imaginary part of βn that are
called ‘leaky modes,’ because their fields grow perpendicular
to the z axis with distance to the central region [81, 82, 201].
As discussed in section 2.3, similar normalization approaches
as in equation (35) have been developed in the past [81, 82].
Only recently, the analytic normalization for RS from [91]
has been adapted to these leaky modes and combined with
the resonant-state expansion [83, 84]. Similarly, the first-order
perturbation theory for homogeneous and isotropic perturba-
tions in the exterior surrounding described in [14] has been
transferred to leaky modes [102]. Based on this approach, it
is possible to calculate the group velocity from the resonant
field distributions when considering the frequency as global
perturbation.

4.3. Application in nonlinear optics

In most derivations, the theory of RS relies on the use of recip-
rocal materials, see [84, 91, 94] and references therein. Reci-
procity is a very fundamental principle that can be broken only
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by a few possibilities [109]. One of them is based on non-
linearities. While we have shown here that the theory of RS
can be extended to nonreciprocal materials, it still relies on
the assumption of a linear material response. Hence, it might
seem counterintuitive that it is possible to apply the theory of
RS in nonlinear optics.

However, in the case of propagating modes, the description
of nonlinear pulse propagation in optical fibers is mostly based
on using a single or few bound modes as basis [202], resulting
for a single mode with index m in the nonlinear Schödinger
equation:

∂zAm ≈ iγ|Am|2Am− i
β
(2)
m

2
∂2
τAm−α(0)

m Am. (139)

Here, Am is the frequency-dependent amplitude of that modes,

τ = t−β
(1)
m z, while β

(n)
m and α(n)

m are the nth order frequency
derivatives of the real and imaginary parts of the propagation
constant βm (see previous section) at a central frequency ω0.
Furthermore, γ is the Kerr nonlinearity parameter related to
a third-order nonlinearity, which is typically calculated via an
integral over expressions containing the correctly normalized
modes [202].

The nonlinear Schrödinger equation is applicable, because
the third-order nonlinearity is usually rather small, so that it
is possible to treat it in a perturbative manner. In the case that
we consider the propagation of leaky modes, it turns out that
equation (139) remains valid, but the calculation of the Kerr
nonlinearity parameter becomes more complicated due to the
leakiness of the modes [113, 203–205]. Interestingly, γ is no
longer real, but in general a complex number with the ima-
ginary part resulting either in nonlinear loss or even nonlinear
gain for the overall attenuating pulses [113]. The nonlinear
gain results in optical pulses that are spectrally broader and
more compressed temporally than expected from the simpler
theory of bound modes. In addition to the Kerr nonlinearity,
it is also possible to describe four-wave mixing of bound and
leaky modes [114, 202].

While the nonlinear Schrödinger equation is a theoret-
ical description of Kerr nonlinearities based on propagating
modes, RS associated to poles of the Green’s dyadic on the
complex frequency plane have been used for approximat-
ing nonlinear responses, too. In the case of harmonic gen-
eration [206], the nonlinear susceptibility of order n gener-
ates fields at frequency nω. In the so-called undepleted pump
approximation [207–209], the energy transfer from the pump
frequency to the harmonic is neglected, which allows to first
solve Maxwell’s equations at the pump frequency and then to
calculate the field emitted at the nth harmonic by considering
the nonlinear polarization as an equivalent source current. The
fields at the fundamental harmonic can be expanded in terms
of the RS as described in section 2.5. Using the pole expan-
sion of the Green’s dyadic in equation (29) at the harmonic
frequency, it is then possible to derive also the emitted field in
the basis of RS [210].

In the case of the Kerr nonlinearity, it is not possible to neg-
lect the interplay of the linear fields and the contributions due

to the nonlinear susceptibility. Still, it has been shown that one
can use a modal description in terms of RS to approximate the
Kerr nonlinearity in a ring resonator by appropriately account-
ing for the stored energy density [211].

5. Conclusion and outlook

We have shown here that the theory of RS follows directly
from the analytic continuation of Maxwell’s equations to the
complex frequency plane. Thus, it is often possible to describe
the optical response solely in terms of contributions from the
discrete set of RS. More specifically, the Green’s dyadic and
related quantities such as the near and far field exhibit poles
at the complex eigenfrequencies of the RS. The correspond-
ing weight functions and residues of the poles can be associ-
ated to the resonant field distributions of the considered system
and its transposed counterpart. Thus, the near and far field in
a given frequency range can be often expanded by the pole
contributions of a small set of relevant RS and a background
contribution that summarizes distant poles and nonresonant
terms. Care has to be taken, because the expansion in terms
of RS is not complete in the exterior of the resonator structure,
but possible workarounds have been discussed above.

When knowing a larger set of RS as basis for a refer-
ence system, we have summarized how to set up the resonant-
state expansion, which is a perturbative method up to arbitrary
orders of perturbations that yields the RS of a perturbed sys-
tem as solutions of a simple eigenvalue equation. In general,
this requires accounting for cut contributions and static modes.
The first-order approximation of the resonant-state expansion
results in simplified analytic expressions for resonance shifts
and linewidth changes, which can be used for analyzing and
optimizing nanoresonators for resonantly enhanced refractive-
index sensors. Extensions to external perturbations as well as
how to derive spectral changes in such sensors are provided
here, too. Finally, we included an overview of how to describe
the Purcell effect for open resonators based on the theory of
RS.

However, the theory of RS has also some drawbacks, as
mentioned above. Mostly, they are related to the growing
nature of the RS outside the resonator geometry. Some of these
issues can be resolved when switching to other modal meth-
ods, see section 4. Still, the question remains if the theory of
RS is more than a complex mathematical approach to describe
only simple resonant lineshapes.

In his book ‘The Principles of Quantum Mechanics,’ Paul
Dirac states [212]: ‘the only object of theoretical physics is
to calculate results that can be compared with experiment. . .it
is quite unnecessary that any satisfactory description of the
whole course of the phenomena should be given.’ Based
on that, any reasonable numerical method would be just as
good as a profound theory. However, it is also Dirac, who
admits [213]: ‘it is more important to have beauty in one’s
equations than to have them fit experiment.’ Of course, it is
difficult to quantify the beauty of a theory. Richard Feyn-
man adds [214] that ‘you can recognize truth by its beauty
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and simplicity.’ A good theory should therefore be simple
and agree with experimental observations. But besides being
descriptive and explanatory, which is something that can be
often afforded by numerical calculations, theory should be also
predictive, i.e. one should be able to deduce new phenomena
that can be later verified experimentally. Let us see how the
theory of RS fits into these classifications of a good theory.

First, we have provided here several examples, where the
theory of RS yields good agreement with experimental meas-
urements [19, 27, 183, 198]. In fact, this list of theory-
experiment collaboration is not complete, but it has to be
admitted that so far, most publications on the theory of res-
onant states compare this theory with some sort of analytic or
numerical results. Of course, by knowing that these numerical
tools have predicted experimental observations accurately in
the past, it is possible to deduce that the theory of resonant
states will be able to achieve the same in the near future. Prob-
ably, such theory-experiment collaboration will be the major
route for the theory of resonant states in this decade, with
several recent publications from the Lalanne group pointing
in that direction [183, 198].

In contrast to numerical schemes, the theory of res-
onant states describes optical properties in the physically-
meaningful basis of resonant states, which gives further insight
into the underlying physics [27, 138]. Even nonlinear phe-
nomena can be considered in that way. Most importantly, the
theory follows directly from Maxwell’s equations, so that all
arising contributions can be calculated either analytically or
numerically without the need to carry out any fitting proced-
ures. This definitely proofs the existence of beauty and gener-
ality in the theory of resonant states. The challenge is to derive
all relevant resonant states for a given system. Once this is
achieved, the optical properties of this system can be derived
efficiently. Further analysis then allows optimizing the system
for certain applications such as sensing.

However, the coexistence of several formulations for the
expansion of the near and far fields is sort of unsatisfactory.
The reason for this plethora of formulations may be the over-
completeness of the resonant states. To resolve this issue, a
thorough benchmarking of different approaches is preferable
in the future. Nevertheless, the different formulations have
proven to work well, and which formulation is superior may
depend on the field of application.

Finally, there are examples, where the theory of resonant
states has been predictive [19, 183]. This underlines the power
of this theory beyond conventional numerical methods to solve
Maxwell’s equations. Also, we would like to mention that con-
cepts such as the resonant-state expansion can be applied to
different fields in physics such as quantum mechanics [215],
and even different disciplines can be married in a unifying the-
ory, as shown for optomechanic systems [216].
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Soljačić M 2016 Bound states in the continuum Nat. Rev.
Mater. 1 16048

[61] Pilipchuka A S and Sadreeva A F 2017 Accidental bound
states in the continuum in an open sinai billiard Phys. Lett.
A 381 720–4
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