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Abstract: Here, we introduce a quasi-analytic model that allows studying mode formation
in low refractive index core waveguides through solely focusing on the cladding properties.
The model isolates the reflection properties of the cladding from the modes via correlating the
complex amplitude reflection coefficient of the cladding to the complex effective index of the
fundamental core mode. The relevance and validity of the model are demonstrated by considering
a single-ring anti-resonant fiber, revealing unexpected situations of exceptionally low loss. Our
model explains mode formation by light scattering, which conceptually provides deep insights
into the relevant physics.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Waveguides and in particular optical fibers with low refractive index (RI) cores guide light
through sophisticated optical effects and require well-designed microstructured claddings for
efficiently confining the light, having led to application in important fields such as life-science [1],
nonlinear frequency conversion [2] or quantum technology [3]. Due to the lack of total internal
reflection, the modes of such waveguides continuously dissipate energy along the transverse
directions, i.e. are intrinsically leaky [4], demanding precise cladding design to minimize losses.
The mechanisms used to guide light include (i) the antiresonance (AR) effect [5,6], (ii) photonic
bandgap (PBG) guidance [7,8] and (iii) inhibited coupling (IC) [9,10].

From the geometry perspective, complex cladding geometries that can include hundreds of
high RI cylinders arranged in predefined lattices [11–13] or waveguides with simplified cladding
structures including pixelated Bragg fiber [14], tube lattice AR fibers [15], single- and dual-ring
light cage [16] have recently attracted significant attention. These systems are proven to be
efficient solutions for high-quality optical beam delivery and low-loss guidance, overall becoming
a rapidly growing research field. All these structures have in common that analyzing the relevant
guidance mechanism and precise structure design remain key challenges due to complex and in
many situations spatially extended microstructures.

The most widely used method to analyze low-RI core waveguides relies on full numerical
modeling, i.e., on searching for Eigensolutions (i.e. modes) of the entire waveguide system in
the frequency domain. Here, uncovering the details of the reflective properties of the cladding
and thus performance optimization are challenging as the contribution of the microstructured
cladding to the modal properties cannot be isolated. In addition, full numerical modelling for
large core dimensions, which holds for the majority of fiber waveguides, requires excessive
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simulation time, as both the finely structured cladding and the large core have to be discretized
simultaneously.

Various approximate models were developed to address this issue, yielding (semi-)analytical
expressions for dispersion and loss (i.e. complex effective indices) of the core modes. Specifically,
models for single-ring or multi-layer AR fibers [17–21] have been reported and extended towards
tube lattice AR fibers [22–24]. For instance, the anti-resonant reflecting optical waveguide
(ARROW) model can be used for estimating the wavelengths of minimal transmission [25], while
a more sophisticated model that is based on a Floquet-Bloch approach neglects the core mode
and investigates the photonic band formation [26–28].

Regardless of the cladding structures, light guidance in waveguides can be understood on
the basis of waves [29]: Here, mode formation results from the interference of two counter-
zigzagging waves that are reflected at the core-cladding boundary. The core modes exist when
the accumulated phase shift across the core plus the reflection-induced phase change leads to
constructive interference [30,31]. This physical picture highlights the relevance of the cladding
and suggests that understanding the cladding’s scattering properties is essential.

In previous works, we have introduced a reflection-based model that approximates a circular
cladding by its planar counterpart, leading to analytic expressions for the complex effective mode
index for a hypothetical annulus type AR fiber [21] and allowing for designing a water-core
fiber with an all-solid cladding [32]. In case the core diameter is much larger than the operation
wavelength, the cladding curvature can be neglected, and the field can be locally approximated
as a single plane wave reflecting at the microstructured cladding. These previous works show
that the dispersion and loss of the core modes can be obtained analytically in case the reflection
properties of the cladding are known. However, the specific correlation between the transmission
and reflection coefficients of the cladding and the modal parameters were not explicitly derived,
thus having strongly limited the applicability of the wave model to specific waveguide scenarios.

In this work, we address this issue and introduce a general quasi-analytical model that
unambiguously correlates the complex transmission and reflection properties of a cladding with
the modal properties. This model thus makes it possible to explore and in particular to optimize
the properties of the cladding independently of modal calculations. The advantageous properties
of the model are demonstrated using the single-ring fiber as an example, where extremely low
losses were found for certain geometric configurations.

2. Details of the reflection model

2.1. Derivation of model

The fundamental working principle of our model relies on correlating the modal properties
(here complex effective mode index neff) of the waveguide to the complex amplitude transmis-
sion/reflection coefficients of the corresponding approximated planar cladding structure (complex
single-interface amplitude reflection coefficient: r). In the following, we introduce our reflection-
based model and demonstrate its relevance on the example of simulating the fundamental mode
(FM) of an all-solid single ring AR fiber. The geometry (Fig. 1(a)) is defined by an array of
circularly arranged high RI dielectric cylinders (RI: ns = ∆n + nc (∆n = 0.02), diameter: d,
center-to-center spacing (pitch): Λ) embedded in silica (RI: nc = nsilica, [33]) encircling a large
central core (core diameter (boundary-to-boundary): Dc). Here a large core diameter refers to the
situation that the core radius R is large compared to the wavelength λ (R ≫ λ) leading to a small
angle between the rays and the waveguide axis or the surface of the cylinders. Note that this
geometry was deliberately chosen to resemble the commonly considered situation of a PBG fiber,
consisting of GeO2-doped strands located in a silica background [34]. This particular choice was
made to present the model in an illustrative way, although the applicability of the model is by no
means limited to this example.
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Fig. 1. (a) Sketch of the single-ring AR fiber used here to demonstrate the properties of
our model. (b) The concept of the quasi-analytic model with key parameters: 𝑛𝑐 , 𝜃 and
𝐿. The pink lines refer to the waves zigzagging inside the waveguide core. (c) Geometry
used to calculate the reflection and transmission properties of the corresponding planar
structure.
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where 𝑗01 is the first root of the zero-order Bessel function.99
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, 𝐿 =
2𝑅

tan(𝜃) ≈ 2𝑅
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where ΔΦ𝑟 (𝜃) = arg(𝑟 (𝜃)) is the phase change per reflection at bouncing angle 𝜃 (the latter115
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leaky waveguide with resonant cladding depends, in addition to perfect reflection (term under the117

square root), on the phase change of the single reflection event (most right-handed term). Using118

Fig. 1. (a) Sketch of the single-ring AR fiber used here to demonstrate the properties of our
model. (b) The concept of the quasi-analytic model with key parameters: nc, θ and L. The
pink lines refer to the waves zigzagging inside the waveguide core. (c) Geometry used to
calculate the reflection and transmission properties of the corresponding planar structure.

In the case of a cylindrical core surrounded by a perfectly reflecting core-cladding interface,
constructive interference leads to guided modes in the core in the form of Bessel solutions. The
phase of light resulting from the transverse confinement is given by the roots of the Bessel
function: jlm = κR (transverse component of the wave vector in the core: κ, mth root of the Bessel
function Jl: jlm, core radius: R = Dc/2). Therefore, the transverse component of the wave vector
of the fundamental core mode (FM) can be analytically expressed as:

κ =
j01
R

. (1)

where j01 is the first root of the zero-order Bessel function.
For the sake of simplicity, we consider guidance of the light in a fiber with large core, which

allows to assume that the light wave gets reflected and transmitted at a corresponding planar
boundary. The bouncing angle θ and the longitudinal distance between two reflections (L = L(θ)
in Fig.1 (a)) can be expressed as:

θ = arcsin
κ

k
≈ κ

k
=

j01
kR

, L =
2R

tan(θ) ≈
2R
θ

. (2)

with the wave vector k = k0nc (nc: core index, k0 = 2π/λ0: vacuum wave vector (λ0: vacuum
wavelength)). Note that the approximation used in Eq. (2) is valid for the case when the
propagation constant β ≫ κ, which is true for a large core fiber, especially for the low-order
modes.

The complex reflection and transmission behavior at a planar resonant cladding induce an
additional phase change and loss that need to be accounted for. Here, we calculate the dispersion
(real part of effective mode index Re(neff)) and loss γ of the modes of such leaky waveguide
analytically using the complex single-interface amplitude reflection coefficient r obtained from
planar model simulations (Fig. 2(b)).

Assuming that the microstructured cladding is essentially a perturbed perfectly reflecting
core-cladding interface, the dispersion of the FM in a leaky case can be expressed as follows:

Re(neff) =
√︄

n2
c −

(︃
j01
k0R

)︃2
+
∆Φr(θ)

k0L
. (3)

where ∆Φr(θ) = arg(r(θ)) is the phase change per reflection at bouncing angle θ (the latter is
analytically defined in Eq. (2). Equation (3) nicely illustrates that the dispersion properties of a
leaky waveguide with resonant cladding depends, in addition to perfect reflection (term under the
square root), on the phase change of the single reflection event (most right-handed term). Using
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the bouncing-angle dependent intensity transmission coefficient (𝑇 = 𝑇 (𝜃)) and the distance119

between two reflections (𝐿 = 𝐿 (𝜃)), the loss of the FM can then be described as:120
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𝑇 (𝜃)
𝐿 (𝜃) ≈ 0.8311

𝑇 (𝜃)𝜆0

𝑛𝑐𝑅
2 for, 𝑇 ≪ 1, (4)

showing that, with approximation for low loss (𝑇 ≪ 1), the loss is proportional to the power121

transmission coefficient of the single interface 𝑇 .122
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according to Eq. (2). To illustrate this effect, the angle 𝜃 of the FM is plotted in Fig. 2(a),132

showing considerable small values supporting the approximation used in Eq. (2). Note that for133

this example, we used sin and tan in the calculation for 𝜃.134
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Fig. 2. Dependence of the various model-related parameters on the waveguide parameter
𝑉 (note that here 𝑉 is varied by changing 𝑑) of the single-ring AR fiber shown in Fig.
1(a) (simulation parameters can be found in the main text). (a) Bouncing angle 𝜃 for
the fundamental mode (HE11-mode). (b) Transmission at port2 of the planar geometry
(Fig. 1(c)). (c) Corresponding phase difference between the forward scattered field by
the structure and the incident field ΔΦ𝑠 . The gray areas in (b) and (c) and the labels on
the top of (a) refer to the LP-resonances (i.e., cut-offs) inside the cylinders.

The small index contrast (Δ𝑛 = 0.02) between cylinders and background results in a polarization135

independent reflection, as it can be shown for the reflection at a single interface with the Fresnel136

equation. Therefore, we can employ a single plane wave (transverse-magnetic (TM) polarization137

is used here, transverse-electric (TE) will be the same) as the incident field from port1.138

Fig. 2. Dependence of the various model-related parameters on the waveguide parameter
V (note that here V is varied by changing d) of the single-ring AR fiber shown in Fig. 1(a)
(simulation parameters can be found in the main text). (a) Bouncing angle θ for the
fundamental mode (HE11-mode). (b) Transmission at port2 of the planar geometry
(Fig. 1(c)). (c) Corresponding phase difference between the forward scattered field by the
structure and the incident field ∆Φs. The gray areas in (b) and (c) and the labels on the top
of (a) refer to the LP-resonances (i.e., cut-offs) inside the cylinders.

the bouncing-angle dependent intensity transmission coefficient (T = T(θ)) and the distance
between two reflections (L = L(θ)), the loss of the FM can then be described as:

γ[dB/m] = −10
log10(1 − T(θ)))

L(θ) ≈ 4.34294
T(θ)
L(θ) ≈ 0.8311

T(θ)λ0

ncR2 for, T ≪ 1, (4)

showing that, with approximation for low loss (T ≪ 1), the loss is proportional to the power
transmission coefficient of the single interface T .

2.2. Verification of the model

The corresponding numerical planar model used to determine optical properties of the approx-
imated planar structure consists of a periodic arrangement of cylinders using a two cylinder
segment of the AR fiber, including periodic boundary (PB) conditions (Fig. 1(c)). Two ports
were defined to receive the reflection and transmission properties of the structure.

For the following simulations we choose the number of cylinders N = 16, d/Λ = 0.50 and
the operation wavelength λ = 1µm. Here, we vary the V parameter V = πd(n2

s − n2
c)1/2/λ

by changing the diameter of the cylinders d while keeping λ fixed. Note that we have d/Λ
fixed, therefore, while d increases, Dc and R increase accordingly and the angle θ also changes
according to Eq. (2). To illustrate this effect, the angle θ of the FM is plotted in Fig. 2(a),
showing considerable small values supporting the approximation used in Eq. (2). Note that for
this example, we used sin and tan in the calculation for θ.

The small index contrast (∆n= 0.02) between cylinders and background results in a polarization
independent reflection, as it can be shown for the reflection at a single interface with the Fresnel
equation. Therefore, we can employ a single plane wave (transverse-magnetic (TM) polarization
is used here, transverse-electric (TE) will be the same) as the incident field from port1.
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The distribution of the power transmission coefficient T for various V-parameter, calculated at
port2 in the planar model (Fig. 2(b)) shows periodically appearing maxima corresponding to
the resonances in the cladding. To illustrate this qualitatively, Fig. 2(c) shows the related phase
difference between the incident and forward scattered electric fields ∆Φs. Here, the domains
of low transmission are associated with phase differences close to 180◦, demonstrating the
importance of destructive interference in the microstructured cladding for achieving low-loss
values.

In Fig. 3 we show the dispersion and loss of the FM of the single-ring AR fiber obtained
by the equations above using the planar reflection calculations (green solid lines, Eqs. (3)–(4))
in comparison to full numerical modal calculation with the finite element method (FEM) for
the circular waveguide structure (purple dots, structure shown in Fig. 1(a)). Although the
angles used in the reflection-based model were approximated by those of the corresponding
perfectly reflecting waveguide and no further assumptions were considered, the results of the
reflection model excellently match the dispersion and loss of the large-core AR fiber. Only slight
discrepancies are visible at small V values, which can be attributed to the larger bouncing angles
θ making the assumptions of the model more critical.
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Fig. 3. Comparison of the calculated waveguide dispersion of the FM of the single-ring
AR fiber considered in Fig. 2 using the reflection-based model (green solid line) and
full numerical simulations (purple dots, Finite-Element modelling). Note that the
𝑉-parameter is varied by changing the cylinder diameter 𝑑. (a) Dispersion of phase
index (here the normalized relative phase index is used and nlo = nsilica(𝜆 = 1 µm)). The
labels on the top of the plot indicate the cylinder modes that anti-cross with the core
mode, i.e., identify the respective resonance. (b) Modal loss (in units of dB/m). The
gray bars indicate the resonances of the cladding. Normalized electric field distributions
(norm of E-field) at an example waveguide parameter of 𝑉= 4.81 are shown on the
right side ((c): modal simulations, (d): planar reflection model). Note that the intensity
values shown are cropped at high values to make the characteristic features of the field
patterns visible.
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correspondence between mode field calculation (Fig. 3(c)) and the reflection-based model (Fig.156

3(d)). Despite the simplification of the incident field being a single TM-polarized plane wave,157

the excited field in the cylinders, i.e. resonances, of the planar model is consistent with that of158

the modal calculation.159

Fig. 3. Comparison of the calculated waveguide dispersion of the FM of the single-ring
AR fiber considered in Fig. 2 using the reflection-based model (green solid line) and full
numerical simulations (purple dots, Finite-Element modelling). Note that the V-parameter
is varied by changing the cylinder diameter d. (a) Dispersion of phase index (here the
normalized relative phase index is used and nlo = nsilica(λ = 1 µm)). The labels on the
top of the plot indicate the cylinder modes that anti-cross with the core mode, i.e., identify
the respective resonance. (b) Modal loss (in units of dB/m). The gray bars indicate the
resonances of the cladding. Normalized electric field distributions (norm of E-field) at an
example waveguide parameter of V= 4.81 are shown on the right side ((c): modal simulations,
(d): planar reflection model). Note that the intensity values shown are cropped at high values
to make the characteristic features of the field patterns visible.

The spatial distribution of the electric fields (norm of E-field |E|2) clearly demonstrates
the correspondence between mode field calculation (Fig. 3(c)) and the reflection-based model
(Fig. 3(d)). Despite the simplification of the incident field being a single TM-polarized plane
wave, the excited field in the cylinders, i.e. resonances, of the planar model is consistent with
that of the modal calculation.
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3. Results

3.1. All-solid single-ring AR fibers with identical cylinders

The capabilities of the model are demonstrated in the following by a large-scale parameter sweep
of the modal loss of the FM for the all-solid single-ring AR fiber introduced in Fig. 1 (Fig. 4).
Specifically, the study is concentrated on the V-parameter interval between the second and third
resonance (LP21- and LP12-mode) of the cladding (3.83<V<5.52) and extends the calculation of
Fig. 3 towards geometry-related dimension that refers to changing the d/Λ ratio (Λ is changed, d
is fixed), leading to the loss map shown in Fig. 4(a). Remarkably, this map reveals regions of
extraordinary low loss (γ<10−4dB/m) for combinations of specific parameters. For a selected
geometry (i.e. selected combinations of pitch and strand diameter (d/Λ = 0.3, horizontal dashed
red line in Fig. 4(a)) the results of the model are compared with those from full numerical
calculations (Fig. 4(b)), revealing a good match and therefore the applicability of the model also
in situation of a strong susceptibility of the modal loss on the various parameters.
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simulated fields shown in Fig. 5. The LP-labels refer to the resonances (abscissa labels
also apply to (b) and (c)). (b) Comparison of the loss obtained from the reflection-based
model (red line) and full numerical simulations (circular waveguide, purple dots) for
a geometry that is defined by 𝑑/Λ = 0.3 (horizontal dashed red line in (a)). The two
arrows indicate the configuration of the simulated fields shown in Fig. 5. (c) The
corresponding relative absolute phase difference between the forward scattered and
incident field ΔΦ = |ΔΦ𝑠 − 180◦ |. The gray color bars in (b) and (c) indicate the
resonances of the cladding.

Fig. 4. (a) Loss of the fundamental core mode as a function of d/Λ (Λ is changed, d is fixed)
and V-parameter (d is changed) for the all-solid single-ring AR fiber (parameter defined in
the main text) between the LP21 and LP12 resonances. The color scale indicates the loss
level in units of dB/m. The yellow dots refer to the configurations of the simulated fields
shown in Fig. 5. The LP-labels refer to the resonances (abscissa labels also apply to (b) and
(c)). (b) Comparison of the loss obtained from the reflection-based model (red line) and full
numerical simulations (circular waveguide, purple dots) for a geometry that is defined by
d/Λ = 0.3 (horizontal dashed red line in (a)). The two arrows indicate the configuration of
the simulated fields shown in Fig. 5. (c) The corresponding relative absolute phase difference
between the forward scattered and incident field ∆Φ = |∆Φs − 180◦ |. The gray color bars in
(b) and (c) indicate the resonances of the cladding.

In accordance with the discussion of the previous chapter, the corresponding relative absolute
phase difference between the forward scattered field and the incident field ∆Φ = |∆Φs − 180◦ |
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is shown in Fig. 4(c). The same tendency as the loss distribution (Fig. 4(b)) is found, with ∆Φ
being close to 0◦ at the V parameters of the lowest loss, again emphasizing the relevance of this
parameter within the context of minimize waveguide losses.

To demonstrate the relevance of ∆Φ, the z-component of the electric fields for the V parameters
labeled with two arrows in Fig. 4(b) are shown in Fig. 5. In the case of a very low phase
difference (∆Φ<(10−2)◦ at V = 4.81), destructive interference behind the structure (y>0) is
clearly visible, leading to very low loss. This situation is different for V = 4, showing significant
power transmission through the chain of cylinders. The results clearly reveal that the coupling
between the modes of the cylinders is essential (Λ was changed in Fig. 4(a)), as the scattering
from a single isolated cylinder does not show such low-loss behavior.

In accordance with the discussion of the previous chapter, the corresponding relative absolute173

phase difference between the forward scattered field and the incident field ΔΦ = |ΔΦ𝑠 − 180◦ | is174

shown in Fig. 4(c). The same tendency as the loss distribution (Fig. 4(b)) is found, with ΔΦ175

being close to 0◦ at the 𝑉 parameters of the lowest loss, again emphasizing the relevance of this176

parameter within the context of minimize waveguide losses.177

- 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0

- 1 0

0

1 0
( a )

y  [ µ m ]  

 

 V  =  4

x [
µm

]

- 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0
- 2 0
- 1 0

0
1 0
2 0 ( b )  V  =  4 . 8 1

x [
µm

]
y  [ µ m ]

- 1 . 0

0 . 0

1 . 0

Fig. 5. Spatial distribution of the 𝑧-component of E-field plotted at the 𝑉-parameters
labeled by arrows in Fig. 4(b). The fields are normalized to their maximum value and
are rescaled to the range [0,1]. (a) 𝑉 = 4; (b) 𝑉 = 4.81.

To demonstrate the relevance of ΔΦ, the 𝑧-component of the electric fields for the𝑉 parameters178

labeled with two arrows in Fig. 4(b) are shown in Fig. 5. In the case of a very low phase179

difference (ΔΦ < (10−2)◦ at 𝑉 = 4.81), destructive interference behind the structure (𝑦 > 0) is180

clearly visible, leading to very low loss. This situation is different for 𝑉 = 4, showing significant181

power transmission through the chain of cylinders. The results clearly reveal that the coupling182

between the modes of the cylinders is essential (Λ was changed in Fig. 4(a)), as the scattering183

from a single isolated cylinder does not show such low-loss behavior.184

3.2. All-solid single-ring AR fiber with alternating cylinders185

A further reduction of the modal losses through modifying the geometry, i.e. to minimize ΔΦ,186

requires an additional degree of freedom as the geometry with identical cylinders is limited187

in terms of potential structural variations. For the single-ring AR fiber discussed here, a188

chain of cylinders with alternating diameters and identical RIs (Fig. 6 (a)) is proposed in the189

context of this study, representing a promising approach as recently demonstrated [35] and a190

principally implementable extension of the discussed waveguide structures. Note that the planar191

reflection-based model contains one period of the diameter-modified structure (Fig. 6 (b)).192

Dc

d2

Λ

nc

nc

ns

port1 

port2 

PB PB 

Λ

kz

kx

(a) (b)d1

Fig. 6. (a) Sketch of the diameter-modified all-solid single-ring AR fiber and (b) the
corresponding approximated planar model used to obtain the reflection properties of
the cladding.

In the following, the modal loss is calculated as a function of the diameters of adjacent193

cylinders, while the pitch is fixed in accordance to the configuration giving the lowest loss in194
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3.2. All-solid single-ring AR fiber with alternating cylinders

A further reduction of the modal losses through modifying the geometry, i.e. to minimize ∆Φ,
requires an additional degree of freedom as the geometry with identical cylinders is limited
in terms of potential structural variations. For the single-ring AR fiber discussed here, a
chain of cylinders with alternating diameters and identical RIs (Fig. 6(a)) is proposed in the
context of this study, representing a promising approach as recently demonstrated [35] and a
principally implementable extension of the discussed waveguide structures. Note that the planar
reflection-based model contains one period of the diameter-modified structure (Fig. 6(b)).
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Fig. 6. (a) Sketch of the diameter-modified all-solid single-ring AR fiber and (b) the
corresponding approximated planar model used to obtain the reflection properties of the
cladding.

In the following, the modal loss is calculated as a function of the diameters of adjacent
cylinders, while the pitch is fixed in accordance to the configuration giving the lowest loss in
the previous study (at V = 4.81 and pitch Λ = 1.2669 µm). Therefore, the resulting loss map
includes V1 and V2 as varying parameters (V1 = πd1(n2

s − n2
c)1/2/λ, V2 = πd2(n2

s − n2
c)1/2/λ) and

is shown in Fig. 7.
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Fig. 7. (a) Map showing the modal loss of the modified cylinder structure as a function of
𝑉1 and 𝑉2 (𝑑1 and 𝑑2 are varied, other parameters are fixed) for the diameter-modified
all-solid single-ring AR fiber (𝑁 = 16, Λ = 1.2669 𝜇m, 𝜆 = 1 𝜇m, 𝑛𝑐 = 𝑛silica,
𝑛𝑠 = 𝑛𝑐 + 0.02). The two yellow dots refer to the configurations of the field plots shown
in Fig. 8. The LP-labels refer to the resonances (abscissa labels also apply to (b) and
(c)). (b) Modal loss as a function of 𝑉2 for a constant value of 𝑉1 (red dashed red line in
(a), 𝑉1 = 4.81, reflection-based model: pink, full numerical simulations: purple dots).
(c) Corresponding relative absolute phase difference ΔΦ. The gray bars in (b) and (c)
indicate the resonances of the cladding.
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Fig. 7. (a) Map showing the modal loss of the modified cylinder structure as a function of V1
and V2 (d1 and d2 are varied, other parameters are fixed) for the diameter-modified all-solid
single-ring AR fiber (N = 16, Λ = 1.2669 µm, λ = 1 µm, nc = nsilica, ns = nc + 0.02). The
two yellow dots refer to the configurations of the field plots shown in Fig. 8. The LP-labels
refer to the resonances (abscissa labels also apply to (b) and (c)). (b) Modal loss as a function
of V2 for a constant value of V1 (red dashed red line in (a), V1 = 4.81, reflection-based
model: pink, full numerical simulations: purple dots). (c) Corresponding relative absolute
phase difference ∆Φ. The gray bars in (b) and (c) indicate the resonances of the cladding.

Here it is important to mention that the loss map (Fig. 7(a)) refers to two different regimes
regarding V1 and V2: For the left part of the loss map (V2<3.832) V1 has values in-between the
second and third resonances (LP21 and LP12), while V2 lies within the region between the first
and second resonances (LP11 and LP21). For the right side of the map (V2>3.832), in contrast,
both V1 and V2 are located in the domain between the second and third resonances (LP21 and
LP12). Here it is interesting to observe that the loss properties are different in these two cases:
When neighboring cylinders refer to V parameters in different PBGs (left part), exceptionally
loss as small as γ ≤ 10−7 dB/m appears for certain combination of parameters.

The plot in Fig. 7(b) shows the loss at V1 = 4.81 (cut-line in Fig.7(a)) calculated from the
reflection-based model (red line) and from the full numerical modal simulations (purple dots),
again demonstrating the good match. The plot in Fig. 7(c) shows the corresponding relative phase
difference ∆Φ, which is highly consistent with the loss trend in Fig.7(b) and, in accordance with
the structure with constant cylinder diameter, is very close to 0◦ at the configurations yielding
ultralow loss.

To reveal that destructive interference is essential for the appearance of the very low-loss
values, Fig. 8 show the electric field distributions for the case of identical (a,c) and alternating
cylinders (b,d) (Note that the two cases correspond to the configurations indicated by yellow
dots and arrows in Figs. 7(a) and (b)). It is obvious that in contrast to identical cylinders, the
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excited fields in the modified cylinders are of different order and the coupling of the excited
resonances leads to efficient destructive interference. The electric field distribution along the
cut-line through the identical cylinders (Fig. 8(c)) confirms that behavior, while for the alternating
cylinder situation (Fig. 8(d)), the electric field through the smaller cylinder exhibits one node less
compared to the bigger cylinder, enabling very effective destructive interference.ultralow loss.211
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Fig. 8. Spatial distributions of the normalized rescaled 𝑧-components of electric fields
for the configurations labeled by the yellow dots in Fig. 7(a) (the arrows in Fig. 7(b)).
The lower plots refer to the distributions at the horizontal cut-lines that go through the
centers of the individual cylinder (indicated by the dashed lines): (a,c) identical diameter
configuration (𝑉1 = 𝑉2 = 4.81). (b,d) ultralow-loss configuration (𝑉1 = 4.81, 𝑉2 = 3).
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Fig. 8. Spatial distributions of the normalized rescaled z-components of electric fields for
the configurations labeled by the yellow dots in Fig. 7(a) (the arrows in Fig. 7(b)). The lower
plots refer to the distributions at the horizontal cut-lines that go through the centers of the
individual cylinder (indicated by the dashed lines): (a,c) identical diameter configuration
(V1 = V2 = 4.81). (b,d) ultralow-loss configuration (V1 = 4.81, V2 = 3).

4. Discussion

The interpretation of the guiding mechanism and the related losses in the context of waves being
scattered at a core/cladding interface yields a clear correlation of losses and properties of the
cladding, thus being highly useful to understand the occurrence of low loss domains. While the
core field is a superposition of an outgoing wave and the backward scattered fields, the field in the
outer medium results from the superposition of the forward scattered waves from the cylinders.
Here, each cylinder can show an anti-resonant behavior at certain values of the V parameter,
leading to a minimum in the forward scattering, i.e. to a minimum in the losses of the guided
mode. Here, using two different cylinder diameters allows obtaining forward scattered waves with
different phases, which can be tuned relative to each other to improve the destructive interference
(∆Φ ≈ 0), overall decreasing the field in the outer medium, and consequently the modal losses.

By focusing exclusively on the cladding, a key advantage of the reflection-based model is
the ability to decipher the underlying physical mechanics of the light reflection process of the
microstructure, which can be difficult in full numerical mode simulations. This principally
allows investigating sophisticated concepts from fields such as photonic crystals (e.g., far-field
cancellation [36] or Q-factor engineering [37]) or nanophotonics-related effects (e.g., bound
states in the continuum [38] or Kerker effect [39,40]) within the context of low-loss guidance
leaky waveguides.

Another advantage of the reflection-based model is the greatly reduced computational effort,
which becomes relevant especially for large-core microstructured fibers and waveguides. Based
on the complex reflection coefficients, which can be determined from straightforward numerical
simulations, both dispersion and loss of the fundamental mode can be quantitatively analyzed
with an analytical equation in a simple and efficient way. Note that the model is not restricted to
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the FM and also higher-order modes can also be investigated in a similar way ((an analysis of the
lowest order HOMs (TE01 and TM01 modes) is shown in the Supplement 1 (dispersions of phase
indices and modal losses are shown in Fig. S1)).

From the geometry perspective, the model is not limited to single ring structures such as
light cages [3,41], and can principally be extended to other cladding structures, as long as the
assumptions made for the model’s derivation are valid. This in particular includes the assumptions
that (i) the core diameter must be significantly larger than the wavelength (D ≫ λ), and (ii) the
thickness of the microstructured cladding must be small compared to the core radius. Note that
a structure with considerably higher RI contrast requires an analysis of TE- and TM-reflection
separately to obtain the results for the HE11 mode, as discussed in one of our previous works
[32]. The characteristic features of the model to dominantly concentrate on the cladding suggest
that it might be useful within the context of lowering losses in currently investigated hollow-core
fibers (e.g., anti-resonant fibers [42–44] or Omniguides [45]). The validity and applicability of
the planar reflection model in relation to other waveguides represents the next step in the analysis
and is currently being intensively pursued in our research team.

5. Conclusion

Waveguides with a low refractive index core represent a promising class of integrated photonic
devices and require a detailed understanding of the cladding properties due to the specifics of the
light guiding process. In this work, we have introduced a quasi-analytic model that allows to
study mode formation in such waveguides through solely focusing on the characteristics of the
microstructured cladding. The model separates the reflection properties of the cladding from
the modes by introducing equations that correlate the complex amplitude reflection coefficient
of the cladding to the complex effective index of the fundamental core mode. The relevance of
the model was demonstrated by analyzing mode formation in all-solid single-ring anti-resonant
fibers, confirming the validity of the model. Additionally, we introduce the relative phase between
forward scattered and incident fields as the key parameter for reducing loss in microstructured
waveguides. By conducting extensive parameter sweeps, unexpected situations of exceptionally
low loss were found for specific combinations of geometric parameters, particularly in cases the
cylinders have alternating diameters.

Overall, our model, which also holds for higher-order modes, allows interpreting light guidance
in microstructured low refractive index core waveguides from a scattering perspective. In
contrast to a modal analysis, light scattering provides intuitive insights into the underlying
physics by focusing solely on the cladding properties, while additionally allowing for extensive
parameter sweeps on reasonable time scales. Here, we believe that our approach can serve as
a bridge between waveguide modes and known concepts from other areas of photonics, e.g.,
regarding metamaterials or photonic crystals, or even cutting-edge topics such as bounded states
in the continuum. Therefore, our model represents a unique platform for the introduction and
investigation of previously unused optical effects in the context of fiber and waveguide optics,
with the overarching goal of developing novel waveguides with unprecedented properties.

In a future step, we plan to implement a corresponding fiber using for instance the stack-and-
draw approach and to compare the discussed simulated results with experimental data in order
to prove the specific guiding properties of the single-ring structure and to verify the model. In
addition, the applicability of the model to other waveguide structures such as hollow core fibers
or Omniguides will be investigated in a study to be published in the future.
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