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ABSTRACT: Structural colors of plasmonic metasurfaces have
been promised to a strong technological impact thanks to their
high brightness, durability, and dichroic properties. However,
fabricating metasurfaces whose spatial distribution must be
customized at each implementation and over large areas is still a
challenge. Since the demonstration of printed image multi-
plexing on quasi-random plasmonic metasurfaces, laser
processing appears as a promising technology to reach the
right level of accuracy and versatility. The main limit comes
from the absence of physical models to predict the optical
properties that can emerge from the laser processing of
metasurfaces in which random metallic nanostructures are characterized by their statistical properties. Here, we demonstrate
that deep neural networks trained from experimental data can predict the spectra and colors of laser-induced plasmonic
metasurfaces in various observation modes. With thousands of experimental data, produced in a rapid and efficient way, the
training accuracy is better than the perceptual just noticeable change. This accuracy enables the use of the predicted
continuous color charts to find solutions for printing multiplexed images. Our deep learning approach is validated by an
experimental demonstration of laser-induced two-image multiplexing. This approach greatly improves the performance of the
laser-processing technology for both printing color images and finding optimized parameters for multiplexing. The article also
provides a simple mining algorithm for implementing multiplexing with multiple observation modes and colors from any
printing technology. This study can improve the optimization of laser processes for high-end applications in security,
entertainment, or data storage.
KEYWORDS: plasmonics, deep learning, image multiplexing, random metasurface, laser-generated nanostructures

Plasmonic colors, which result from a resonant
interaction of light with metallic nanostructures, have
strong assets for inventing innovative applications,

which hold in a nanometer thick layer and are resistant to
aging. Their ultimate spatial resolution allows considering their
use for high-resolution digital cameras,1 data storage,2 or
hyperspectral imaging.3 Their sensitivity to light polarization,
to the refractive index of their close environment, to the near-
or far-field coupling between closely packed metal nanostruc-
tures, or to an electrical bias enables the fabrication of tunable
color filters,4−6 chemical sensors,7,8 stretching detectors,9 or
active chameleon surfaces.10 If plasmonic devices are often
confined to micrometer sizes, some applications require
nanostructuring metal−dielectric surfaces over large areas. It
is precisely the case when visual effects are expected to be
observed with the naked eye.

Recently, plasmonic random metasurfaces produced by laser
over large areas have demonstrated peculiar metamerism
enabling three-image multiplexing, where images are demulti-
plexed by the naked eye under natural light.11,12 This approach
greatly expands the scope of image multiplexing compared to
techniques involving holographic images13−18 or printed
images11,12,19−23 encoded with well-controlled plasmonic
metasurfaces on small areas. Laser processing is easy to
implement on large surfaces, cost-effective, rapid, and flexible,
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and it allows creating subwavelength gratings with a precise
control of their orientation at the micrometer scale thanks to
laser-induced self-organization mechanisms.24−30 However,
unlike usual metasurfaces, laser-induced random plasmonic
metasurfaces are characterized by statistical parameters, due to
the size inhomogeneity and spatial disorder, which are difficult
to measure, and to predict. Indeed, no physical model
presently links the laser-processing parameters to the statistical
parameters of the laser-induced metasurfaces or to their optical
properties. Predicting the colors, or spectra, exhibited by such
metasurfaces in various observation modes over a large range
of laser-processing parameters, and with a high accuracy where
color gradients are steep, could greatly enhance the perform-
ance of laser-processing technologies.
Deep learning seems well-suited to tackle this multidimen-

sional nonlinear problem. In this field of machine learning
inspired by human brain, layered and hierarchical architectures
of artificial neurons can be trained to interpolate nonlinear
variations of multidimensional data from a huge amount of
examples.31−33 Deep learning led to breakthroughs in many
fields such as speech recognition,34 computer vision,35 or
particle physics.36 During the recent past years, interest for
coupling photonics and deep neural networks has grown
tremendously with two main approaches: using waves
controlled by photonic devices to accelerate computing
speed of neural networks by analog calculation37−39 or using
deep learning to boost innovation and technological develop-
ment in photonics.40−48 Many efforts have been devoted to the
design of nanostructures to get predefined far-field responses
using deep neural networks with encoder and decoder-like
models.40,41 The inverse engineering can be achieved by neural

networks provided that the loss function is differentiable.44−47

But, most of the neural networks involved in photonic
problems were trained from simulated data.
In this article, deep neural networks are used to predict the

spectra, and colors, of laser-induced random plasmonic
metasurfaces in different observation modes from the knowl-
edge of laser-processing parameters. The neural networks are
trained from experimental data, and special attention is paid to
the loss function to get high accuracy in the prediction. The
latter enables using the color charts predicted in the various
observation modes for printed image multiplexing. A method-
ology is proposed to mine the laser-processing parameters
space and find all the combinations that can be used to print
multiplexed images. It unveils a lot of solutions that could not
be found from the experimental database, which improves the
optimization strategy. One of the best solutions is finally
implemented experimentally, demonstrating that high-contrast
images can be obtained in the two modes selected for
multiplexing. The model proposes a general approach for
implementing image multiplexing with various techniques and
materials and can be expanded to other conditions of
multiplexing.

RESULTS AND DISCUSSION

Laser-Induced Colors of Random Plasmonic Meta-
surfaces. In this study, we use the same kind of laser-
processed Ag NPs:TiO2 metasurfaces as those used in our
recent article demonstrating laser-induced three-printed image
multiplexing.12 9,600 different random plasmonic metasurfaces
(RPMs) are produced experimentally by varying five laser-

Figure 1. (a) Rationale for the use of deep neural networks to predict the spectra and colors exhibited by a laser-processed random
plasmonic metasurface (RPM) in various modes of observation. The measurement conditions in the six modes of observation are described
in Methods. (b) Logical color tree fulfilled by a set of four RPMs, solution for two-image multiplexing, with bicolor images. The encoded
image printed by laser contains the four RPMs. This encoded image gives rise to two different images (data matrices) when observed in
modes 1 and 2. (c) Six deep neural networks are trained from experimental data to predict the spectra and colors observed in the six modes
of observation (see Methods for details). A mining process among the simulated colors allows extracting all combinations of laser parameter
sets that enable image multiplexing. With one laser parameter set leading to one random plasmonic metasurface, the solutions are given as
sets of RPM.
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processing parameters whose values are given in Supporting
Information Figure S1. The RPMs consist of a thin TiO2 layer
encapsulating Ag nanoparticles whose size distribution,
anisotropy, and spatial distribution vary with the laser-
processing parameters (scanning electron microscopy images
of a selection of RPMs are shown in Supporting Information
Figure S2 for illustration). The spectrum of each RPM is
measured in six observation modes by a semiautomatic Fourier
space microscopy setup49 and normalized in each mode to take
into account the eye adaptation to the maximum luminance in
each mode (see Methods for details about the material, laser
processing, and sample characterizations). After removal of
faulty RPMs, six databases of 9,440 spectra and colors are
obtained. Figure 1a illustrates the process used to create these
databases, and highlights two limitations of the laser-processing
technique to implement image multiplexing. First, no physical
model allows predicting the statistical parameters that
characterize the random plasmonic metasurfaces generated
by laser processing. Second, the latter being complex and
difficult to characterize, simulating the resulting colors is very
demanding. We therefore introduce deep learning to accurately
predict the colors induced by the laser parameters in different
modes of observation. This color prediction intends not only
to efficiently reproduce color images but also to unveil
optimized solutions for printed image multiplexing. The latter
requires one to find out particular RPMs whose colors form
logical color trees such as the one shown in Figure 1b. In this

article, six neural networks are trained to predict the colors in
six modes of observation (Figure 1c). However, for the sake of
clarity, only two modes are considered in the following; the full
color measurements obtained on the four other modes are
shown in Supporting Information Section S2 (Figures S3−S8).
Backside reflection (R-back) and unpolarized transmission (T-
unpol) modes are selected to demonstrate high-contrast image
multiplexing for the naked eye observation under natural light.

Neural Networks for Predicting Laser-Induced Spec-
tra and Colors of Random Plasmonic Metasurfaces. The
architecture of the six feedforward neural networks (NNs)
trained to predict the spectra in the six considered observation
modes is the same (Figure 2a). These NNs take as input the
five laser-processing parameters and give as output a 68-
dimensional vector that stands for a spectrum. The first block
consists of three successive dense layers, which feed a
convolutional block that constructs the characteristics of the
spectra. This block is composed of two consecutive sub-blocks
each being made of two 1D convolution layers with ReLu
activations followed by a pooling layer (maximum pooling and
average pooling, respectively) block. The spectrum is finally
obtained through a fully connected layer.
Beyond the architecture of the network, one key element of

the model is the loss function minimized for optimizing the
parameters. Our aim is to predict color with an accuracy better
than the smallest color difference a human eye can perceive,
also known as the perceptual just noticeable change. However,

Figure 2. (a) Architecture of the proposed neural network. (b) Comparison of predicted (Prd) and experimental (Exp) spectra showing
various spectral errors. (c) Comparisons of sRGB colors calculated from experimental and predicted spectra. Squares with colored edges are
the ones whose spectra are shown in panel b. All colors are calculated from the spectral data by using the CIE standard observer with a D65
illuminant.
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when considering only the colorimetric distance between the
predicted and experimental colors, the NN does not converge.
In order to converge, but also to avoid overfitting, and to get a
high accuracy in color prediction, the loss function is defined
with three terms. These terms are fully described in Methods,
which also explains why each of them is important to reach the
results reported hereafter.
A total of 9,440 experimental data were available for training

and testing each of the six neural networks, one for each mode.
A set of 10% of the instances was kept for testing the model.
The hyper-parameters of the network are tuned on the basis of
a 6-fold cross-validation process to avoid trapping by local
minima (Figure S9). The generalization capacity of our
optimized network for the R-back and T-unpol modes is
illustrated in Figure 2 and Table 1. The shape of the spectra is
well-predicted on average, except in a very few cases as
exemplified in the lower right example of the R-back mode
(Figure 2b), and lead to a spectral loss ϵspect smaller than 1.77%
in all modes. The color differences between the experimental

and predicted data are good in average compared to the
literature50 (Table 1). This is also illustrated with sRGB colors
in Figure 2c (more examples are reported in Figures S10−
S15). Slight differences in the prediction accuracy are observed
from one mode to another (Table 1) and are mainly related to
the changes in the color gamut volume. A smaller gamut leads
to a higher accuracy. Color gamuts in the CIE1976 L*a*b*
color space are plotted in Figure S16. The interested reader
can also look at the dispersion of the spectral loss within the six
gamuts in Figure S17.
The trained neural networks not only reproduce the

experimental colors but also interpolate continuous color
changes with respect to laser parameters. In Figure 3, high-
resolution charts of colors predicted in R-back and T-unpol
modes are compared with the colors deduced from the
measured experimental spectra, when varying scan speed and
laser power. More colors are displayed in Figure S18 when
varying the five laser-processing parameters. For the sake of
comparison, Figure S19 and Table S1 show the low accuracy

Table 1. Generalization Performance of the Optimized Neural Networks for Different Modesa

ΔE76 ΔE94 ΔE00 spectral error, %

loss (D65) mean SD mean SD mean SD mean SD

R-back 1.99 2.08 1.38 1.45 1.38 1.45 1.18 1.39
R-front 1.02 0.88 0.89 0.78 0.86 0.70 0.94 1.01
T-unpol 0.80 0.82 0.66 0.69 0.67 0.63 0.71 0.93
T-pol1 1.64 1.38 1.30 1.07 1.33 1.01 1.60 1.82
T-pol2 1.92 1.76 1.51 1.38 1.51 1.28 1.77 2.20
T-pol3 1.34 1.27 1.00 0.99 1.03 0.93 1.30 1.47
Shi et al.50 2.50 1.58

aThe mean value and the standard deviation of each loss function are calculated over the test dataset in each mode. For the sake of comparison
with ref 50, a loss function using the perceptual color difference ΔE00 is also calculated.

Figure 3. Color charts of the neural network predictions for R-back (a) and T-unpol (c). Experimental data sets (ground truth) for R-back
(b) and T-unpol (d). The repetition rate is fixed at 300 kHz, the linear laser polarization is horizontal, and the distance between successive
laser scans is 2 μm. In the simulated color charts, the scan speed and power are uniformly sampled by 200 × 200 points ranging from 4 to
1,000 μm/s and from 5 to 50%, respectively. In the right column, pixels outlined in blue are outliers where the nanostructures are not well
written and are not used for training or testing the neural network.
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on the predicted colors obtained by replacing the deep learning
approach with an average over the four closest colors. The
finely resolved color variations predicted by the trained neural
networks are going to unveil all of the possible solutions for
printed image multiplexing and allow the selection of the best
one in terms of color contrast. The proposed methodology is
presented in the next section.
Color Mining and Multiplexing Algorithm. Each set of

laser parameters is now linked to a series of six different spectra
through a bijective application, since none of the predicted
combinations of six spectra is equal to another. Consequently,
each laser parameter set must also correspond to a different
RPM, and from now, we identify a RPM to a laser parameter
set. The RPM sets that can be used to print multiplexed images
must satisfy a logical color tree, such as the one shown in
Figure 1c for two colors per mode and two images to display
independently in two different modes. More complex color
trees can be found in references.11,12 A simple and compact
algorithm is proposed to mine the simulated color sets and find
out all of the solutions for two-image multiplexing with two
colors per mode. The algorithm contains three main steps
described hereafter.
Clustering of Each Mode. A hierarchical clustering with

complete linkage is implemented in each mode for grouping
colors. The criterion is the Euclidean distance ΔE76 < 2.2 that
corresponds to the colorimetric distance from which a color
difference is noticeable. The use of ΔE76 was preferred
compared to ΔE94 or ΔE00 because it strongly decreases the
calculation time for clustering without deteriorating the results
significantly. From this step, all the colors present in the same
cluster are referred to by their cluster index. The 40,000 rpms

of the predicted color charts (Figure 3a,c) give rise to 845
clusters in the R-back mode and to 173 clusters in the T-unpol
modes. This difference is due to a larger color gamut in the R-
back mode. One RPM belongs to one and only one cluster in
one mode. Thus, there is no overlapping between clusters in
one mode. The minimum number of RPMs in one cluster is
one. The clusters are identified in the CIE 1976 L*a*b* color
space and can appear as discontinuous areas in the color charts
of Figure 3a,c, where RPM are ordered relative to the laser-
processing parameters. For the sake of illustration, Figure 4b
shows how two clusters in the T-unpol mode (C64 and C108)
arrange in a selection (zoom) of the full predicted color chart.

Cluster Intersections between Modes. Once each predicted
color chart is split into clusters, the algorithm starts searching
the RPMs that form a logical tree. The geometrical approach
implemented is illustrated in Figure 4a with a colored sketch,
and in Figure 4b with the colors and clusters found in our
samples. The mode with the lowest number of clusters (T-
unpol) is chosen as the first mode to limit the calculation time.
One pair of clusters is selected in this mode, and their contours
are projected onto the color chart of the second mode. If at
least two identical clusters of mode 2 are present within the
contours of both clusters of mode 1, then the RPMs belonging
to this cluster intersection are solutions for multiplexing. In
Figure 4a, it is the case for the areas colored in light green, dark
green, and orange in mode 2. One example of solution is
reported in the third plot of Figure 4a. To find all of the
possible solutions, one has to repeat this procedure for each
pair of clusters of mode 1, requiring iteration for the

1173(173 1)
2

−− other possible pairs of clusters of this mode.

Figure 4. Solutions for two-image multiplexing. (a) Principle of the algorithm designed to identify all of the subsets of RPMs that form a
color tree. (b) Example of two true clusters selected in mode T-unpol whose contours are projected in mode R-back. (c and d) Results or the
cluster intersection in the two modes. In this case, clusters C108 and C64 of mode T-unpol both intersect clusters C118 and C146 of mode
R-back and form a solution for two-image multiplexing whose logical color tree is drawn in panel e with the shape of the subclusters that
form the solutions. Each pixel corresponds to one particular RPM. When several solutions are found, only the ones exhibiting the highest
color contrast in each mode are kept.
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In Figure 4b, two true clusters of T-unpol mode, C64 and
C108, are plotted and their contours projected in mode R-
back, where they intersect the same clusters, C146 and C118,
of mode 2. A zoom on these intersections is plotted in Figure
4c for mode 1 and in Figure 4d for mode 2 and is further
enlarged just below in the chart of Figure 4e. The latter also
illustrates the corresponding logical color tree with, for each
solution named “solu”, all of the RPMs that can be used to
print the encoded multiplexed image.
Contrast Maximization. When more than two clusters in

mode R-back are found to intersect the two clusters selected in
the T-unpol mode, only the pair of clusters showing the
highest color contrast in the mode R-back is kept. The color
contrast in this study is defined as ΔE76 + |ΔL*|, where |ΔL*|
stands for the absolute lightness difference. The importance of
using |ΔL*| is illustrated in the next section. After iterating the
algorithm for all pairs of clusters of mode 1, a set of solutions is

obtained, among which the best solutions can be selected using
again the color contrast to filter the solutions.
The size of the subclusters that are solutions for multiplexing

is always small, but it can contain several RPMs that can all be
used as solutions for multiplexing. If the number of laser-
processing parameter values is significantly reduced in the
simulated color chart (undersampling), less solutions for
multiplexing are found. This is especially what happens when
the experimental data sets are used rather than the simulated
data sets (see Figure S20). Color prediction by neural
networks appears thus as a crucial step to identify the best
combinations of laser-processing parameters.

Implementation on the Full Data Set and Optimiza-
tion. The proposed algorithm is applied to a database of
160,000 rpms whose spectra are predicted in the R-back and
T-unpol modes by using 200 different scan speeds, 200
powers, two laser repetition rates, and two distances between
laser lines (sRGB colors plotted in Figure S18). The clustering

Figure 5. Contrast optimization. (a) Color difference ΔE76 and perceptual lightness difference |ΔL*| between the two colors in R-back mode
and the two colors in T-unpol mode that form a solution for multiplexing. Only the 25 solutions that satisfy the following criterion, ΔE76 >
8.3, in both modes, are displayed. (b) Simulated colors of the four RPMs that form the solutions of indices 583 and 1,894 and simulated
images that should be observed in the T-unpol and R-back modes when using these solutions. Solution 583 exhibits ΔE76 and |ΔL*| values of
(9.0; 5.6) for T-unpol and (9.2; 0.1) for R-back modes. Solution 1,894 shows ΔE76 and |ΔL*| values of (10.8; 5.8) for T-unpol and (10.5;
0.3) for R-back modes. (c) Best results after filtering with criteria ΔE76 > 8.3 and ΔL > 4.2. Solution 208 with ΔE76 and |ΔL*| values of (8.3;
5.2) for T-unpol and (10.8; 6.3) for R-back modes. Solution 1,196 with ΔE76 and |ΔL*| values of (28.2; 14.8) for T-unpol and (9.3; 5.1) for
R-back modes. Solution 1,659 with ΔE76 and |ΔL*| values of (10.9; 5.1) for T-unpol and (8.4; 6.3) for R-back modes. Photographs of
authors N.Da. and H.M. are used in this figure.
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process on the whole data set costs 253 GB memory and 20
min. The number of clusters in the R-back mode is 2,810 and
508 in the T-unpol mode. By applying the two-mode and two
colors per mode multiplexing algorithm, 2,239 solutions are
found before the final color contrast filtering. Figure 5a shows
the color difference ΔE76 and the perceptual lightness
difference |ΔL*| between the two colors found in R-back or
in T-unpol mode for the solutions that satisfy the criterion
ΔE76 > 8.3. The last value was chosen arbitrarily in order to
select less than 25 solutions. All of these solutions present a
rather high color difference. However, when |ΔL*| < 1, the
images are almost not perceptible, as illustrated in Figure 5b in
the R-back mode. This result demonstrates that using only the
color difference for optimizing the image is inadequate and
must be completed by the perceptual lightness difference, to
get highly contrasted images. Figure 5c shows the best
solutions obtained when applying the criterion ΔE76 > 8.3
and |ΔL*| > 4.2. The last value was adjusted to keep between 5
and 10 solutions. For the solutions displayed, the image
contrast is now good enough to perceive the images in both
modes.
Robustness of the Solutions. The proposed model based

on neural networks, clustering, mining, and filtering algorithms
is a general approach for implementing image multiplexing
with a kind of printing technology. It can also be used for
showing parameter ranges where there is a higher probability
to find solutions for multiplexing. To understand the influences
of the laser-processing parameters, all of the high-contrast
solutions (ΔE76 > 8.3 and |ΔL*| > 4.2) are plotted in parallel
axes, as shown in Figure 6a. For all solutions, except index 208,
the random nanostructures are induced under two different
repetition rates (300 kHz and 600 kHz). Actually, it is
observed that the two different repetition rates provide
solutions with different perceptual lightness in T-unpol while
maintaining a similar contrast in the R-back mode. The
preferable distance between laser scans is 10 μm. When the
laser power is around 10% and scan speed ranges from 700 to
1000 μm/s, the probability to find highly contrasted solutions
is the highest. This can be useful to optimize the printing of
experimental databases that will lead to high-contrast multi-
plexed images.
Finally the robustness of the predicted solutions is validated

by using one of the best solutions found for two images and
two colors per mode to print a proof of concept by laser. The
gray scale pictures of the two first coauthors are first converted
into binary images, with only black and white pixels, in which
gradients are rendered thanks to an error diffusion algorithm.
Then, these two binary images are combined to create an
encoded image, which is printed by nanosecond laser with four
RPMs made of Ag:TiO2, selected to optimize the contrast
|ΔL*| rather than ΔE76 in each mode. The photographs of the
experimental sample recorded in the R-back and T-unpol
modes with nonpolarized white light are displayed in Figure
6b.
Extension to Multiple Colors and Multiple Images.

The proposed multiplexing algorithm is compact and can be
extended to multimodes (multi-images) and more than two
colors per mode. To find solutions to three-image multiplexing,
one has to start from a solution for two-image multiplexing.
Once the four subclusters are selected in the first two modes.
The projected areas of each subcluster in the third mode must
intersect at least the same pair of clusters of the third mode. If
more than two clusters of the third mode intersect each

subcluster of the solution for two-image multiplexing, then a
contrast-based selection is applied. The intersections make
appear eight subclusters that are solutions for three-image
multiplexing (illustrated in Figure S21). A set of 23 RMPs form
a solution for three-image multiplexing. It is clear that this
process can be stacked and extended to N-image multiplexing
iteratively and the number of different nanostructures needed
is 2N.
The proposed algorithm is also easily extendable for

multicolor multiplexing (illustrated in Figure S22). Finally,
the algorithm in its shape is easily extendable to M-colors and
N-modes, which requires MN-kinds of RPMs. The limit is to
have RPMs and modes that can satisfy such conditions.

CONCLUSIONS
We propose a four-step approach using deep learning to
predict the laser-induced colors of random plasmonic
metasurfaces in different modes of observation and print
highly contrasted multiplexed images. The neural networks are
trained, validated, and tested over 9,440 laser-processed
samples whose spectra are measured in six different
observation modes by a semiautomatic Fourier space
microscopy setup. The peculiarity of the deep learning
model comes from the hybrid nature of the loss function
used to optimize the inner parameters of the network, which
takes into account both the shape of the predicted spectra and
the capacity to generate colors that are perceptually relevant.
The high accuracy of the predicted colors enables their use for
finding all of the possible solutions to image multiplexing
offered by the technology and to select the ones leading to

Figure 6. Implementation of two-image multiplexing. (a) Multi-
dimensional view of the high-contrast solutions for two-mode
multiplexing deduced from predictions by neural networks and
mining of the best solutions for multiplexing. (b) Two photo-
graphs of a physical sample produced with our laser-processing
technique demonstrating the multiplexing of two images in the
modes T-unpol and R-back. The multiplexed image is printed once
on a single Ag:TiO2 thin layer with only four different RPMs.
Photographs of authors N.Da. and H.M. are used in this figure.
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highly contrasted images. The performance of the approach is
demonstrated by implementing image multiplexing on a
physical sample. The simplicity of the observation conditions,
with the naked eye and under nonpolarized white light, the
absence of cross-talk between images, and the simplicity of
fabrication with direct nanosecond laser writing make the
technology very promising for industrial applications.
The introduction of deep learning in the process

considerably increases the performance of laser processing to
print colored and multiplexed images on plasmonic meta-
surfaces as it unveils optimized solutions for multiplexing that
could not be found from roughly sampled experimental data.
The mining process, extendable to M-color N-image multi-
plexing, is a paradigm for selecting colors of random
nanostructures in different modes of observation for multi-
plexing and can find various applications in other fields such as
entertainment, data storage, or security.

METHODS
Experiments. Initial Sample Preparation. Following a protocol

fully described in ref 11, 200 ±30 nm thick mesoporous TiO2 thin
films are elaborated by sol−gel process on glass slides . The films are
soaked in a silver nitrate solution (0.85 M) and exposed to UV light
(254 nm, 6 mW/cm2) for 5 min to fill the pores with Ag ions, Ag
atoms, and small Ag nanoparticles, as described in ref 51.
Laser Processing. A nanosecond (1.3 ns pulse duration) fiber laser

(IPG Photonics) emitting at 532 nm wavelength scans the sample
surface by means of a scanner head equipped with a 16 cm F-Theta
lens, giving a laser spot diameter at 1/e2 of 13.5 μm and a maximum
fluence of 8.5 J/cm2 at 600 kHz. The laser fluence is deduced from
the laser power given in the article as follows:

fluence (J/cm )
power (W)

effective area (cm ) repetition rate(Hz)
2

2=
×

The laser is linearly polarized using a Brewster-angle polarizer, and the
polarization can be rotated by a half-wave plate. The 9,600
metasurfaces are created over 72 mm2 square pixels, which are
drawn by hatching each square with laser lines, separated by an
interline distance named dy, parallel to the diagonal at a constant scan
speed, laser power, repetition rate, and polarization orientation. To
build the initial database, 9,600 sets of these laser-processing
parameters were chosen; their values are given in Figure S1. The
layer thickness of the Ag NPs:TiO2 films varies with the laser-
processing parameters typically between 80 and 150 nm.
Measurement and Normalization of Spectra. Spectral character-

ization measurements are performed with a microspectroscopy setup
based on a Nikon TE2000-U inverted microscope in combination
with an imaging spectrometer consisting of a Princeton Instruments
SP2500i grating monochromator and a PIXIS-256 Peltier-cooled
CCD camera. The sample is mounted in a motorized stage
(Mar̈zhaüser) in the microscope sample plane. The microscope is
connected to the spectrometer via a modified 4-f relay, which projects
the Fourier plane instead of the image plane onto the spectrometer
entrance slit.49 In this way, an angle-resolved image can be recorded.
An iris in the microscope image plane is used to only select light from
a single field on the sample at a time.
To measure spectral reflectances, the sample is illuminated by a

fiber-coupled halogen lamp via a Köhler illumination setup through
the objective (100×, NA 0.9). The measured signal is normalized
using an Au mirror. The accessible-angle range is limited by the
objective NA. For spectral transmittance measurements, a critical
illumination path is used to illuminate the sample via a condenser
with the same light source. In this case, the condenser lens NA (0.65)
is limiting. Polarizers are inserted above the condenser lens and below
the microscope objective. A custom-built LabView-based software
package is used to automatically record the spectral transmittance and
reflectance.

Measurements in reflection are carried out with nonpolarized light
and averaged over the incidence-angle range [13°; 17°] when the
sample is illuminated from the film side (frontside reflection) or from
the substrate side (backside reflection). Measurements in trans-
mission mode are carried out under normal incidence with
nonpolarized light (unpolarized transmission) or when placing the
sample between two polarizers with three different angular
configurations. Polarized transmission 1 corresponds to the
configuration where the polarizer axis is parallel to the 0° laser
polarization and the analyzer axis is at 80° from the polarizer axis. In
polarized transmission 2, the two polarizers are rotated by 60°
compared with polarized transmission 1. In polarized transmission 3,
the two polarizers are rotated by 120° compared with polarized
transmission 1.

A custom-built LabView-based software package is used to
automatically record the spectral transmittance and reflectance for
all positions on the sample by moving the XY stage. All measured
spectra are further filtered with a moving average resulting in a 5 nm
spectral resolution.

The final step is a normalization of all spectra based on colorimetric
considerations to take into account eye adaptation to the maximum
luminance in each observation mode. The proposed procedure is
explained in Section S2. The spectra used for training the neural
networks are those obtained after this last normalization step.

Neural Networks. The loss function is made of two terms, a
spectrum loss, ϵspect, and a perceptual color loss including ϵΔE94

and

ϵΔE76 defined as follows:

N
i
N

i i
spect

φ φ
ϵ =

∑ | − *|
(1)

where φi is the ith training spectrum, N is the batch size, and φi* is the
predicted spectrum. Note that a mean absolute deviation is used
rather than a standard least-squares error to prevent the algorithm
from overfitting outliers. The two terms of the perceptual color loss
are defined as
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where ΔE94(φi,φi*) and ΔE76(φi,φi*) are the perceptual color
differences, in the definitions of 1994 and 1976, respectively, between
the predicted and training spectra. The global loss function is defined
as the following linear combination:
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In this work, the scaling factors are set to α = 0.1 and β = 1.0,
which have been shown to be robust for all the modes. The ΔE94
perceptual color difference is more relevant than ΔE76 to discriminate
colors that are close to each other. However, it appears to be not
reliable anymore to measure colorimetric distances when its value is
large (typically larger than 10), leading to divergence if it is used from
the beginning. The combination of the two perceptual color losses
appears to improve the results accuracy, compared to the use of ϵΔE76

only, and the reliability of the trained network in the different modes.
The neural networks are optimized using several techniques such as

cross-validation, dropout, and regularization. Each data set consists of
9,440 samples. All works are performed on the basis of PyTorch,52

ver. 1.5, with graphic card GTX1080Ti on clusters with an Ubuntu
system at Laboratoire Hubert Curien. For each mode, the
optimization process costs 2 weeks before finishing.
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CLUSTERING
The grouping of colors is performed using agglomerative
clustering or hierarchical clustering with complete linkage,
known as unsupervised learning methods. While the K-means
method is commonly used in clustering, we noticed that the
hierarchical clustering with complete linkage was more robust
in giving the same clustering tree on running at different times.
The clustering is conducted using Python with scikit-learn,53

ver. 0.24.0. For 160,000 CIELAB data, the program takes over
250 GB memory in an Ubuntu system with Intel Xeon Gold
6136.
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