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What optical fiber modes reveal: group velocity
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Precise control of fiber modes and their dispersion is essential, particularly for fields such as nonlinear frequency
conversion or biosensing, both of which often require extensive and time-consuming simulations for design opti-
mization. Here, we develop a first-order perturbation theory for predicting the effective index of bound and leaky
fiber modes that is applicable for arbitrary global perturbations as long as the perturbations in the external sur-
rounding are constantly homogeneous and isotropic deviations from the unperturbed fiber. This includes changes
not only in permittivity and permeability, but also in wavelength. Thus, we are able to calculate the group velocity
solely from the field distributions of the fiber modes at a single wavelength, which therefore allows for large-scale
parameter sweeps for accurately managing dispersion. We demonstrate the capabilities of our theory for various
trial systems such as step index fibers, photonic crystal fibers, and light cages. ©2021Optical Society of America

https://doi.org/10.1364/JOSAB.418272

1. INTRODUCTION

Optical fibers represent one of the most successful photonic
devices and guide light in a central core surrounded by a
cladding. Particularly with respect to modal engineering,
this cladding could be a homogeneous material, as in the case of
step index and capillary fibers [1], or comprise complex struc-
tures, such as the periodic arrangements of holes or strands in
microstructured fibers [2]. The guiding properties of both kinds
of fibers are impacted by the constituent materials that comprise
the core and cladding and react to changes of these materials.
Due to the strong susceptibility of the core mode to changes
of the refractive index, optical fibers represent one promis-
ing platform for bioanalytical or medical applications [3–6].
Furthermore, the dispersion properties of the fiber modes can be
accurately tuned over a wide range in complex fiber geometries,
which is essential, particularly in the context of ultrafast non-
linear optical effects such as supercontinuum generation [7] or
four-wave mixing [8].

All of the mentioned applications demand optimizing the
fiber structures via extensive numerical simulations, which can
be time-consuming and may not be used for large-scale param-
eter sweeps. Here, the perturbation theory is known to be a
suitable approach for such tasks, since it can significantly reduce
the simulation time and complexity [9], thus providing a path-
way toward design optimization. Optical perturbation theories
based on the resonant states, also known as quasi-normal modes,
are broadly used for optical resonators [10–12]. However, care

has to be taken with respect to the normalization of unbound
modes. These modes are leaky in the sense that they radiate part
of their energy to the far field. Hence, their field distributions
grow with distance to the resonator. In recent years, different
approaches have been developed in order to normalize these
modes correctly [13–16], resulting in accurate predictions for
various refractive index sensors [9,17–19]. We have adapted the
analytical normalization of Ref. [16] to fiber and leaky wave-
guide geometries [20], which allows for predicting changes of
the effective index of bound and leaky fiber modes in the case of
modifications of the refractive index with perturbation theory,
as well as for describing the nonlinear pulse propagation of leaky
modes [21]. Common to all of these perturbative approaches is
that they deal exclusively with perturbations in the interior of
the structure. This limitation is overcome for optical resonators
in Ref. [22], where the resonance frequency shifts, and linewidth
changes are predicted correctly for homogeneous and isotropic
perturbations in the exterior.

More specifically, the infinite volume integral over pertur-
bations in the exterior is replaced in Ref. [22] by an integral
over the boundary of a finite volume. We adapt this approach
to propagating modes in fiber geometries. An interesting fact
is that for these modes, the wavelength is an input parameter
to Maxwell’s equations similar to the refractive index, which,
in turn, means that changes in wavelength can be treated as a
perturbation. This allows for an exact prediction of the group
velocity based on calculating the fiber modes and their field
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Fig. 1. Real part of the propagation constant β as a function
of wavenumber k0 for an unperturbed photonic crystal fiber (see
schematic on the right) with permittivity ε and permeability µ (green
dashed–dotted line) and for a perturbed fiber with permittivity ε′ and
permeabilityµ′ (red solid line). Via our first-order perturbation theory,
we can predict the change of the propagation constant1β not only for
small modifications 1ε and 1µ of the permittivity and permeability,
respectively, but also for wavenumber changes 1k0. The radius of
the inclusions in the photonic crystal fiber is 0.5 µm, and the pitch is
2.3µm. The unperturbed fiber in the dispersion plot has a background
refractive index of 1.47, while the perturbed fiber has a background
refractive index of 1.44. The index of the inclusions (holes) is one.

distributions at a single frequency, without having to repeat-
edly solve Maxwell’s equations for different wavelengths and
approximating derivatives with respect to wavelengths by finite
differences. Hence, we can predict the propagation constant for
small changes in the wavelength, permittivity, and permeability
(see Fig. 1), as long as the modification of Maxwell’s equations is
homogeneous and isotropic in the exterior.

2. THEORY

In fiber geometries, the permittivity and permeability tensors, ε
andµ, respectively, are translationally symmetric along one spa-
tial direction, which we choose to be the z direction. Hence, we
can apply the Fourier transformation

f̂ (r‖; β)=
1

2π

∫
∞

−∞

dz f (r‖; z)e−iβz, (1)

with r|| being the projection of r to the x y plane, and the hat
denoting Fourier transformed quantities. Thus, Maxwell’s
equations can be written in the frequency domain [time
dependence exp(−iωt), Gaussian units] as

M̂0(r||; β)F̂= Ĵ(r||), (2)

where

M̂0(r||; β)=
(

k0ε −∇̂β×

−∇̂β× k0µ

)
, with ∇̂β =

 ∂x

∂y

iβ

 ,
(3)

and

F̂=
(

Ê
iĤ

)
and Ĵ(r||)=

(
Ĵ
0

)
. (4)

Here, Ê is the electric field, Ĥ is the magnetic field, k0 =ω/c
is the wavenumber, while ε= ε(r||) and µ=µ(r||) denote
the permittivity and permeability tensors, respectively.
Furthermore, Ĵ=−4π i ĵ/c is the source of the fields, where ĵ is
the electric current. Resonant states are solutions of Maxwell’s
equations in the absence of source terms that satisfy outgoing
boundary conditions in the transversal directions with complex
propagation constantsβm :

M̂0(r||; βm)F̂m = 0. (5)

We now introduce a perturbation in our system as a change in
permittivity (ε→ ε+1ε) or permeability (µ→µ+1µ) or a
change in wavenumber (k0→ k0 +1k0) that can be converted
to a change in wavelength. We also introduce a factor3 to turn
the perturbation on and off. The new perturbed operator M̂ can
be written as

M̂= M̂0 +31M̂, (6)

where

1M̂≡1M̂k0 +1M̂ε +1M̂µ, (7)

with

1M̂k0 =

(
1k0ε 0

0 1k0µ

)
,

1M̂ε =

(
k01ε 0

0 0

)
,

1M̂µ =

(
0 0
0 k01µ

)
. (8)

Henceforth, we consider the subscript ν for the resonant
states of the perturbed system, which satisfy

M̂(r||; βν)F̂ν = 0. (9)

For every solution F̂m of Eq. (5) with propagation constant
βm , there exists a reciprocal conjugate solution F̂R

m with propa-
gation constant −βm . We now use the forward and reciprocal
conjugate, i.e., backward propagating modes as in Ref. [20], to
get

F̂ν · M̂0(r||; βm)F̂R
m − F̂R

m · M̂(r||; βν)F̂ν = 0. (10)

Integrating over a circular surface S of radius R in the x y
plane that encloses all regions of spatial inhomogeneities and
applying vector identities, we obtain

R
∫

dφ(Êνφ ĤR
mz − Êνz ĤR

mφ − Ê R
mφ Ĥνz + Ê R

mz Ĥνφ)ρ=R

+i(βν − βm)

∫
S

dA(Êνρ ĤR
mφ − Êνφ ĤR

mρ − Ê R
mρ Ĥνφ + Ê R

mφ Ĥ+νρ)

+i3
∫

dA F̂R
m ·1M̂F̂ν = 0,

(11)
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where we have introduced cylindrical coordinates ρ and φ for
the sake of convenience.

Similar to perturbation theories in quantum mechanics [23]
and the first-order external perturbation theory in Ref. [22], we
write the propagation constantβ and fields of the perturbed sys-
tem as a power series, i.e.,

βν = βm +3β
(1)
m + O(32)+ · · · , (12)

and

F̂ν = F̂m +3F̂(1)m + O(32)+ · · · . (13)

Substituting these expansions in Eq. (11) and equating the
zero-order terms with respect to3, we obtain

R
∫

dφ(EφHR
z − E z HR

φ − E R
φ Hz + E R

z Hφ)ρ=R = 0. (14)

For the sake of convenience, we exclude the hat and subscript
m. Using the symmetries of the system [20], the reciprocal
conjugate (backward propagating) modes can be converted
to forward propagating modes by multiplying a factor of −1
to the in-plane components of the magnetic field and the z
component of the electric field. The other components remain
unchanged. Hence, Eq. (14) is trivially fulfilled. We now equate
the first-order terms for3 to get

R
∫

dφ{EφH(1)
z + E z H(1)

φ − E (1)
φ Hz − E (1)

z Hφ}ρ=R

+ 2iβ(1)m

∫
S

dA(EρHφ − EφHρ)− i
∫

S
dAFR

m ·1MFm = 0.

(15)

We evaluate the first-order correction terms in Eq. (15) in
order to obtain the first-order correction term of the propaga-
tion constant. The details of deriving the first-order correction
terms for the fields are described in Appendix A.

The first-order correction term then yields

β(1)m =

∫
dAFR

m ·1MFm +
1ε
ε

Lε1 +
1µ

µ
Lµ1 +

1k0
k0

Lk0
1

S0 + L0
,

(16)
where 1ε and 1µ are homogeneous and isotropic modifica-
tions of the permittivity and permeability in the surroundings,
respectively. Furthermore, Lε1, Lµ1 , and Lk0

1 are defined as

Lε1 = β I0 + I1 − IE , (17)

Lµ1 = β I0 + I1 − IH, (18)

Lk0
1 = Lε1 + Lµ1 , (19)

with I0, I1, IE , and IH as line integrals in the exterior:

I0 =
iεµk2

0

κ4

∫
dφ

(
E z
∂Hz

∂φ
− Hz

∂E z

∂φ

)
ρ=R

, (20)

I1 =
ik3

0 R2εµ

2κ4

∫
dφε

{[(
∂E z

∂ρ

)2

− ρE z
∂

∂ρ

(
1

ρ

∂E z

∂ρ

)]

+µ

[(
∂Hz

∂ρ

)2

− ρHz
∂

∂ρ

(
1

ρ

∂Hz

∂ρ

)]}
ρ=R

,

(21)

IE =
i Rk0ε

κ2

∫
dφ

(
E z
∂E z

∂ρ

)
ρ=R

, (22)

IH =
i Rk0µ

κ2

∫
dφ

(
Hz
∂Hz

∂ρ

)
ρ=R

. (23)

Here, κ is defined as κ2
= εµk2

0 − β
2, with ε and µ being

the permittivity and permeability in the surroundings. The
radius R defines the circular area over which the surface and line
integrals are calculated. The circle can be arbitrarily large, except
for the condition that it must comprise all regions of spatial
inhomogeneities. The terms in the denominator of Eq. (16) are
defined as

S0 = 2i
∫

S
dA(EρHφ − EφHρ), (24)

and

L0 =

(
1+

β2

εµk2
0

)
I0 +

2β

k2
0εµ

I1. (25)

Interestingly, it turns out that the denominator of Eq. (16) is
the expression for the normalization of leaky modes, as derived
in Ref. [20]. This normalization automatically reappears as part
of the first-order perturbation theory.

3. PERTURBATION IN PERMITTIVITY

Let us consider only an ε perturbation in our system. Thus, the
1µ and1k0 terms go to zero, and we are left with a surface and
line integral for only the ε perturbation in Eq. (16). The surface
term for a purely ε perturbation is given by

Sε1 = ik0

∫
S

dAER
m ·1εEm . (26)

We see that the surface integral term for external perturbation
is identical to the previously derived surface term for internal
perturbations in Ref. [20], with an additional line integral term
enclosing the surface of integration. Both the surface and line
terms are calculated at an arbitrary radius R taken outside the
region of spatial inhomogeneities. Since the modes of fibers such
as photonic crystal and capillary fibers are leaky in nature, the
fields of these modes grow as we move radially away from the
fiber core. Hence, both the surface and line integral terms are
not independent of the radius of integration, as can be seen in
Fig. 2 for an ε perturbation of unity in the entire system, for a
higher-order leaky mode of a silica–air photonic crystal fiber
with effective index 1.431+ 0.000342i . We can see that both
the surface (blue solid line) and line (red dashed line) integrals
are growing as a function of the radius of integration, but their
sum cancels out the increasing amplitude of the two integrals,
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(a) (b)

Fig. 2. (a) Real and (b) imaginary parts of the surface and line
integral defined in Eqs. (26) and (17) for1ε= 1 throughout the fiber
as a function of the radius of integration for a higher-order leaky mode
of a silica–air photonic crystal fiber. The fiber has four cladding rings
with one missing inclusion as the core (see schematic in Fig. 1). The
strand radius is 0.25 µm, and the pitch is 2.3 µm. The wavelength is
1 µm. It is evident that the surface and line integrals are growing with
the radius of integration, but their sum cancels out this growth and
results in a constant value.

yielding a constant value (green solid line) irrespective of the
radius of integration. Note that the same radius of integration is
applied to all quantities in Eq. (16), including its denominator.

We now apply the first-order perturbation theory for an
external ε perturbation to a step index fiber. The chosen fiber has
a teflon amorphous fluoropolymer (AF) core with an index of
n = 1.29 [24] and a radius of r = 5 µm. We choose this fiber for
its low index solid core that can be placed in high index liquids
for refractive index sensing and other applications [25,26]. The
unperturbed background index is nbg = 1.60. The schematic
of this fiber can be seen in the inset of Fig. 3(a). In Figs. 3(a) and
3(b), we compare first-order perturbation theory (blue solid
lines) and exact solutions (red circles) for the real and imaginary
parts of the effective index, respectively, as a function of the
background index for the fundamental core mode. The propa-
gation constant is related to the effective index asβ = k0neff. We
see that there is a good agreement between the exact solution and
first-order perturbation theory for small index changes of the
background material. The considered wavelength is 1µm.

We now investigate a second example of a liquid surrounding
a light-cage structure [28]. The schematic of the light cage is
shown in the inset of Fig. 4(b). Since the light-cage structure
is placed in the liquid, the background index is the same as the
core index, which leads to higher field intensities interacting
with the change in background index. The radius of the twelve
strands of the light-cage structure is r = 1 µm, and the material
of the strands is a polymer, as in Ref. [29]. We display the real
and imaginary part of the effective index in Figs. 4(a) and 4(b),
respectively, for exact numerical solutions and first-order per-
turbation theory. We can see that there is a very good agreement
for the real part of the effective index in Fig. 4(a) due to its linear
behavior as a function of the background index. Particularly, the
slope of the numerical calculations is predicted correctly. The
imaginary part also shows a good agreement as long as the per-
turbation is not too high. The unperturbed background index,
indicated by the arrow in Fig. 4, is nbg = 1.32 (water [30]).

(a)

(b)

Fig. 3. Comparison of the (a) real and (b) imaginary parts of the
effective index between the exact solution (red circles) and first-order
perturbation (blue lines) as a function of the background refractive
index of the fundamental core mode for a leaky step index fiber having
n < nbg. Note that the y -axis scale in (a) is the difference of the effective
and core indices n to make very small changes of the effective index
visible when changing the background index nbg. The radius of the
core is 5 µm, and the wavelength is 1 µm. The unperturbed refractive
indices are n = 1.29 (teflon AF) in the core and nbg = 1.60 (high index
liquids [27]) in the surroundings, where the latter is indicated by the
arrow.

(a) (b)

Fig. 4. Comparison of the (a) real and (b) imaginary parts of the
effective index between the exact numerical solution (red circles) and
first-order perturbation (blue lines) as a function of the background
refractive index of the fundamental core mode for a light-cage structure
embedded in a liquid medium. The strand radius is 1 µm, and the
pitch (center-to-center) is 7 µm. The unperturbed background index
is nbg = 1.32, indicated by the arrow in the plots. The wavelength is
1.50µm.

4. WAVENUMBER PERTURBATION

Now let us consider only a k0 perturbation, which essentially
translates to a change in wavelength treated as a perturbation.
We first investigate the case of a simple capillary fiber of radius
r = 5 µm. The unperturbed wavelength is 1 µm. Figures 5(a)
and 5(b) display the real and imaginary parts of the effective
index, respectively, as a function of wavelength, for the exact
solution and first-order perturbation. We see that there is a very
good agreement between the two for both the real and imagi-
nary parts, especially for small perturbations in wavelength.
In fact, our perturbation theory can be used to calculate the
exact value of the group velocity in fiber geometries as a single
post processing step, in contrast to conventional numerical
approaches.
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(a) (b)

Fig. 5. Comparison of the (a) real and (b) imaginary parts of
the effective index between the exact solution (red circles) and first-
order perturbation (blue lines) as a function of wavelength for the
fundamental core mode of a capillary fiber. The radius is 5 µm, and
the unperturbed wavelength is 1 µm (indicated by the arrow). The
refractive indices are n = 1.00 and nbg = 1.45.

(a) (b)

Fig. 6. Comparison of the group velocity v/c between the
(a) numerical solution and (b) first-order perturbation as a func-
tion of wavelength and strand radius for the fundamental core mode
of a silica–air photonic crystal fiber having four cladding rings and one
missing inclusion as the core (see schematic of Fig. 1). The period is
kept constant at 2.3 µm. The refractive index of silica is 1.44, while air
has an index of one.

We now predict the values of the group velocity using the
first-order perturbation and compare it with the numerical
solutions for a silica–air photonic crystal fiber in Fig. 6. The
background index is nbg = 1.44 (silica), and the strands have
n = 1 (air). The pitch is kept constant at 2.3 µm. We see in
Figs. 6(a) and 6(b) that there is an excellent agreement of the
group velocity for different strand radii and wavelengths. The
group velocity is plotted in units of c , the speed of light. Hence,
perturbation theory constitutes an efficient tool for predicting
the group velocity of complicated fiber systems.

5. CONCLUSION

Precise knowledge of modal properties is essential for many pho-
tonic applications including bioanalytics, mode coupling, or
ultrafast nonlinear frequency conversion. Here, we have derived
a first-order perturbation theory for material perturbations of
permittivity and permeability in the external surroundings. We
have demonstrated good agreement between the propagation
constants using exact solutions and first-order perturbation
theory for small perturbations using different example fibers.
We have also treated wavelength as a perturbation and shown
that our theory is extremely valuable for calculating parameters

such as group velocity as a simple post processing step. The
results achieved will allow for speeding up simulations in order
to determine modal properties, which is essential for areas such
as dispersion engineering within, e.g., supercontinuum gener-
ation or refractive index sensing with respect to bioanalytical
applications.

APPENDIX A: FIRST-ORDER CORRECTION
TERMS FOR THE FIELDS

In order to derive the first-order correction of the fields, let us
consider Eq. (13). In this equation, we can write

F(1)m =
d F̃
d3
|3=0 =

{
∂F̃
∂3
+
∂F̃
∂β

∂β

∂3

}
3=0

, (A1)

where we define F̃= F̃(r||; β;3)with the tilde as the analytical
continuation ofβ in the exterior of the fiber. Using the relations

β = βm +3β
(1)
m + O(32)+ · · · (A2)

and

κ2
+ β2

= (ε+31ε)(µ+31µ)(k0 +31k0)
2, (A3)

we get

∂κ
∂3
|3=0 =

1εµk2
0 + ε1µk2

0 + 2εµk01k0

2κm
=

γ

2κm
, (A4)

∂κ
∂β
|3=0 =

−βm

κm
. (A5)

We know from solving Maxwell’s equations in homogeneous
and isotropic media that the z component of outgoing fields in
the exterior have the form [1,31]

E z =
∑

n

E0n H(1)
n (κρ)e inφ, (A6)

Hz =
∑

n

H0n H(1)
n (κρ)e inφ, (A7)

where H(1)
n (x ) denotes Hankel functions of the first kind. The

coefficients E0n and H0n correspond to transverse magnetic and
transverse electric fields, respectively, while the full fields are
a superposition of the two contributions. Hence, by applying
Eq. (27) on the z component of the electric field, we have

E (1)
mz =

(
∂κ
∂3
+ β(1)m

∂κ
∂β

)
∂Emz

∂κ

∣∣∣∣
κ=κm

=

(γ
2
− βmβ

(1)
m

) ρ

κ2
m

∂Emz

∂ρ
, (A8)

where we have applied Eqs. (30) as well as (31) and converted the
κ derivative to a ρ derivative using the fact that Eq. (32) solely
contains products ofκ and ρ. The same steps can be carried out
for the first-order correction of the magnetic field, resulting in a
functional behavior identical to Eq. (34), except that the z com-
ponents of the electric field are replaced by that of the magnetic
field.
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Next, we express E (1)
mφ in dependence of the z components

[32]:

Eφ =
iβ
κ2ρ

∂E z

∂φ
−

i(k0 +31k0)(µ+31µ)

κ2

∂Hz

∂ρ
. (A9)

By applying Eq. (27) to the above equation, we obtain the
first-order correction term for the φ component of the electric
field as

E (1)
mφ =

(
iκ2

mβ
(1)
m + 2iβ2

mβ
(1)
m − iβmγ

κ4
mρ

)
∂Emz

∂φ

+

(
iβmγ − 2iβ2

mβ
(1)
m

2κ4
m

)
∂2 Emz

∂φ∂ρ

+

(
ik0µγ − 2ik0µβmβ

(1)
m

2κ4
m

−
i1k0µ+ i1µk0

κ2
m

)
∂Hmz

∂ρ

+

(
2ik0µρβmβ

(1)
m − ik0µργ

2κ4
m

)
∂2 Hmz

∂ρ2
.

(A10)

For H(1)
mφ , we use the relation

Hφ =
iβ
κ2ρ

∂Hz

∂φ
+

i(k0 +31k0)(ε+31ε)

κ2

∂E z

∂ρ
, (A11)

which yields

H(1)
mφ =

(
iκ2

mβ
(1)
m + 2iβ2

mβ
(1)
m − iβmγ

κ4
mρ

)
∂Hmz

∂φ

+

(
iβmγ − 2iβ2

mβ
(1)
m

2κ4
m

)
∂2 Hmz

∂φ∂ρ

+

(
2ik0εβmβ

(1)
m − ik0εγ

2κ4
m

+
i1k0ε+ i1εk0

κ2
m

)
∂Emz

∂ρ

+

(
ik0εγρ − 2ik0ερβmβ

(1)
m

2κ4
m

)
∂2 Emz

∂ρ2
.

(A12)

Substituting the above correction terms to Eq. (15) of the
main text and using the relations in Eqs. (35) and (37) at3= 0
for the remaining φ components in the first line of Eq. (15), we
obtain Eq. (16).
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