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On the pole expansion of electromagnetic fields
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Abstract: In several publications, it has been shown how to calculate the near- or far-field
properties for a given source or incident field using the resonant states, also known as quasi-normal
modes. As previously noted, this pole expansion is not unique, and there exist many equivalent
formulations with dispersive expansion coefficients. Here, we approach the pole expansion of the
electromagnetic fields using the Mittag-Leffler theorem and obtain another set of formulations
with constant weight factors for each pole. We compare the performance and applicability of
these formulations using analytical and numerical examples. It turns out that the accuracy of
all approaches is rather comparable with a slightly better global convergence of the approach
based on a formulation with dispersive expansion coefficients. However, other expansions
can be superior locally and are typically faster. Our work will help with selecting appropriate
formulations for an efficient description of the electromagnetic response in terms of the resonant
states.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recent developments in micro- and nanophotonics comprise a large number of applications such
as biosensing [1–3], infrared and Raman spectroscopy [4,5], enantiomer discrimination [6,7], and
flat optics [8,9]. Furthermore, micro- and nanophotonic structures offer intriguing phenomena
such as strong near fields [10], complex wave patterns [11,12], hot electrons [13,14], and perfect
absorption [15,16]. Understanding the involved mechanisms and optimizing devices requires
numerical calculations, which can be time-consuming and cumbersome.

Instead of using full-wave simulations, it has become quite popular to develop semi-analytical
descriptions based on the resonant states, also known as quasi-normal modes [17,18]. The
advantage of this approach is that it requires calculating only a finite and usually small number of
resonant states of a system in the spectral region of interest, and to use this physically meaningful
set of modes in order to describe both local excitation [19–22] and light scattering [23–27].
Several non-intuitive predictions of that theory have been validated recently [28,29]. If the
number of resonant states is small, it is possible to derive semi-analytical expressions, e.g., for
the performance of refractive index sensors [30–34]. Of particular interest is the interaction with
quantum emitters and the calculation of related quantities such as mode volume, quality factor,
and Purcell enhancement [19–21,35], which has been recently extended to a quantum-optical
description via a quantization of the resonant states [36]. When using a large number of resonant
states, an eigenvalue equation can be set up in order to derive the resonant states of a perturbed
system via the so-called resonant-state expansion [30,37], where the perturbation can be extremely
large. For instance, the resonant states of a metallic sphere can be calculated from those of a
dielectric sphere [38]. Completeness is of course an important issue [39], and it might require
including so-called static modes [40]. The resonant-state expansion has been also extended to
guiding geometries [41–44], and so-called permittivity eigenmodes [45].

Several numerical approaches exist to calculate the resonant states, while analytical solutions
are only known for few geometries such as planar slabs, see Fig. 1. An interested reader might
consult the benchmark of different numerical methods in [46]. The principle concept is to search
for solutions of Maxwell’s equations with outgoing boundary conditions in the absence of sources.
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However, the resulting field distributions are only determined up to a scalar complex number,
so that the correct normalization for the resonant states has to be found by other means. Only
recently, several approaches have been developed, including approximate far-field schemes [47],
numerical schemes [32,48], integration over complex coordinates or perfectly-matched layers
[20], and fully analytical approaches [18,37].

Fig. 1. Schematic of a homogeneous slab. The top panel displays transmittance spectra for
a GaAs slab of thickness d = 1 µm and a refractive index of 3.5 in air at normal incidence
from the top. Below the spectra, we depict the complex energy plane, with each resonant
state corresponding to a pole marked by a red cross. The resonant field distributions inside
the slab are indicated by red lines at the front of the slab.

Using an appropriate normalization scheme, it is then possible to expand the Green’s dyadic
inside a resonator geometry in terms of the resonant states [18], with the complex resonance
frequencies as poles of the Green’s dyadic. Thus, the local electromagnetic fields can be
determined for a given source in terms of the resonant states. As noted in [17], this resonant
expansion is not unique, and several equivalent approaches exist to calculate the pole contributions.
Recently, the performance of various approaches has been compared numerically for Lorentz-
dispersive materials [49], with only minor differences between them. Furthermore, it has been
shown that there exists in principle a continuous family of possible expansions [50]. However, all
these formulations contain frequency-dependent weight functions for each pole. These weight
functions consist of overlap integrals of resonant field distributions with the source terms.
Here, we approach the question of suitable field expansions via the Mittag-Leffler theorem.

Thus, we arrive at formulations equivalent to those in [49] for arbitrary materials. As an extension
to previous work, we obtain formulations that contain weight functions evaluated solely at the
complex resonance frequencies. Hence, we do not have to evaluate overlap integrals repeatedly
for each frequency of interest. The drawback of these formulations is a more complex background
contribution. The performance of the different formulations is compared for the analytic example
of a planar homogeneous and isotropic slab in air as well as for the numerical examples of a
one-dimensional dielectric and a two-dimensional metallic grating.
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2. Theoretical approach

For the sake of brevity, we formulate Maxwell’s equations in frequency domain [time dependence
exp(−iωt), Gauss units, wavenumber k = ω/c] in terms of a matrix-operator formulation [18]:

M̂(r; k)F(r; k) = J(r; k). (1)

Here, M̂ = kP̂ − D̂, with

P̂(r; k) =

ε(r; k) −iξ(r; k)

iζ(r, k) µ(r; k)

 , D̂ =
©«
0 ∇×

∇× 0
ª®¬ , (2)

where ε, µ, ζ , and ξ are the permittivity, the permeability, and possible bi-anisotropic contributions,
respectively. The six-dimensional supervector F comprises electric and magnetic fields:

F(r; k) =

E(r; k)

iH(r; k)

 . (3)

If we consider a region in space that is free of sources, i.e., the right-hand side of Eq. (1) is
zero, the electromagnetic fields usually consist of incoming and outgoing parts. As described
in [17,27], the incoming field Fin may be included for a scattering geometry with background
material distribution P̂BG and local material change ∆P̂ = P̂ − P̂BG as the incoming part of a
background field FBG = Fin + F

out
BG, which is a solution of the following Maxwell’s equations:

M̂BG(r; k)FBG(r; k) = 0, (4)

where M̂BG = kP̂BG − D̂. Thus, the total field supervector can be expressed as a superposition
of the background and a scattered field as Ftot = FBG + Fscat. Although we consider here only
homogeneous and isotropic background material distributions P̂BG , it is in general possible to
introduce more complex background systems such as planar interfaces between two materials to
account for a different substrate material. After some algebra, we obtain [17,27]:

M̂(r, k)Fscat(r, k) = −k∆P̂(r, k)FBG(r, k) ≡ Jscat(r, k). (5)

In the latter equation, the second term is equivalent to a source current Jscat emitting the scattered
field. Knowing the Green’s dyadic Ĝ of Eq. (1) with

M̂(r, k)Ĝ(r, r′; k) = Iδ(r − r′), (6)

where I is a six-dimensional unit matrix, we can calculate the scattered field as

Fscat(r; k) =
∫
V
dV ′Ĝ(r, r′; k)Jscat(r′; k). (7)

Based on the Mittag-Leffler theorem [51], the Green’s dyadic can be expanded inside a resonator
in terms of the resonant states [18]:

Ĝ(r, r′; k) =
∑
n

Fn(r) ⊗ FR
n (r′)

k − kn
. (8)

These resonant states constitute a discrete number of solutions of Maxwell’s equations for J = 0
at complex wavenumbers k that satisfy purely outgoing boundary conditions:

M̂(r; kn)Fn(r) = 0. (9)

This equation defines the resonant field distributions Fn only up to a complex scalar. In order to
use them in Eq. (8), an appropriate normalization scheme has to be applied. As mentioned in the
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introduction, several approaches have been developed [18,20,32,37,47,48]. We are using here the
analytic approach described in [18]. Note that we neglect in Eq. (8) possible cut contributions
[52] and the superscript R refers to the reciprocal conjugate of the electric and magnetic fields
of the resonant states [53,54]. Reciprocal conjugate resonant states are solutions at the same
resonant energies but for reciprocal boundary conditions. For planar geometries, reciprocal
boundary conditions are given by an inversion of the inplane wavevector components.
Combining Eq. (8) with Eq. (7), we thus can construct the total field as

Ftot(r; k) = FBG(r; k) −
∑
n

In(k)
k − kn

Fn(r), (10)

where we have introduced the overlap integral In, which is given in the absence of bi-anisotropic
contributions (ζ = ξ = 0) by

In(k) = k
∫
V
dV

[
ER
n (r) · ∆ε(r; k)EBG(r; k) −HR

n (r) · ∆µ(r; k)HBG(r; k)
]
, (11)

with ∆ε = εscat − εBG and ∆µ = µscat − µBG. The latter terms are in general k dependent
3 × 3 tensors describing the difference of permittivity and permeability between the background
material distribution and the scatterer. The pole expansion of the total field given by Eq. (10) is
broadly used as a semi-analytical method to expand the near fields for a given resonator system
[17,27,48]. Henceforth, we refer to it as formulation with dispersive expansion coefficients.

When approaching the resonant expansion of the Green’s dyadic via the wave equation for the
electric fields for µ = 1, a slightly different expansion of the field is obtained:

Etot(r; k) = EBG(r; k) −
∑
n

k
kn

In(k)
k − kn

En(r). (12)

This formulation is used, e.g., in [23,55]. The only difference is the factor k/kn in the pole
contributions. Using the sum relation

∑
n En ⊗ ER

n /kn = 0 [21], the equivalence of Eq. (10) and
(12) can be shown when considering the complete set of resonant states and a constant µ = 1.
Both formulations are compared in [49] for a finite number of resonant states, with a negligible
advantage of the expansion via Eq. (12).
It should be noted that the integrals In(k) in Eqs. (10) and (12) have to be evaluated at every

wavenumber k. This complicates the application of this type of expansion, since overlap integrals
have to be calculated repeatedly. To circumvent this drawback, it is possible to consider the total
field as an analytic function of k with a countable number of poles and to apply the Mittag-Leffler
theorem to the total field in order to simplify the k dependence of Eq. (10). However, the
application of the Mittag-Leffler expansion to the field is in general not as simple as that for the
Green’s dyadic. Depending on the asymptotic behavior of the field for k→∞, a suitable order
of the Mittag-Leffler expansion has to be chosen.

In general, the Mittag-Leffler theorem states that a complex function f (z) that is analytic except
for a countable number of poles an with residues bn and the asymptotic behavior lim

z→∞
f (z)/zp = 0

can be expanded as [51]

f (z) =
p−1∑
m=0

f (m)(0)
m!

zm +
∑
n

bn
z − an

(
z
an

)p
. (13)

Here, f (m)(0) denotes the mth-order derivative of f at z = 0. For p = 0, we obtain

f (z) =
∑
n

bn
z − an

, (14)
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which can be used for the Green’s dyadic, while we obtain for the first-order (p = 1):

f (z) = f (0) +
∑
n

bn
z − an

z
an
= f (0) +

∑
n

bn
(
1
an
+

1
z − an

)
. (15)

In both cases, a rather simple pole contribution as a sum over bn/(z − an) arises, with a nontrivial
background f (z) +

∑
n bn/an for the first-order Mittag-Leffler expansion. In general, a pth-order

Mittag-Leffler expansion can be reformulated as

f (z) =
p−1∑
m=0

[
f (m)(0)
m!

+
∑
n

bn
am+1n

]
zm +

∑
n

bn
(z − an)

. (16)

That means that for any order p, we obtain a pole contribution of the form
∑

n bn/(z − an),
accompanied for p>0 by a polynomial of order p − 1.
If the pth-order Mittag-Leffler expansion is applicable, an expansion of order p′ with p′>p is

possible, too. Assuming that the Mittag-Leffler expansion is unique, we thus infer sum rules∑
n

bn
am+1n

= −
f (m)(0)
m!

, (17)

which must hold for any order m>p. In principle, the sum rules in Eq. (17) could be used in
order to estimate the accuracy of a pole expansion when considering only a finite set of resonant
states. However, this is beyond the scope of this work. Furthermore, it should be noted that a
finite number of poles in the expansion results in an error that can be compensated locally by
a polynomial correction. For instance, in Ref. [27], a polynomial fit has been carried out to
approximate the optical scattering matrix based on a finite number of resonant states. From the
above analysis, we deduce that it is irrelevant if the resulting polynomial correction originates
from a nonresonant background or from neglecting spectrally-distant resonant states.

In the case that the background field is free of poles, the pth-order Mittag-Leffler expansion of
the total field yields

Ftot(r; k) =
p−1∑
m=0

[
1
m!
F
(m)
tot (r; 0) −

∑
n

In(kn)
km+1n

Fn(r)
]
km −

∑
n

In(kn)
(k − kn)

Fn(r), (18)

where F(m)tot denotes the mth derivative of F with respect to k. Evidently, the pole contribution in
Eq. (18) is much simpler than that in Eq. (10), since it requires calculating the overlap integral in
Eq. (11) only once at the complex wavenumbers kn of the poles. The drawback is that we need to
account for a more complex background. Henceforth, we refer to the pole expansion based on
Eq. (18) as the pth-order Mittag-Leffler expansion of the total field, with p = 0, 1 in our examples.

It should be noted that the same arguments hold for the scattering matrix, too. More specifically,
in [26], a k-dependent numerator occurs in the pole expansion of the scattering matrix that
is accompanied by a trivial background term. In [27], an alternative derivation leads to a
k-independent numerator in the pole expansion at the cost that the background term of the
scattering matrix becomes less trivial. In some cases, a combination of trivial background and
pole contributions might be assumed [24], but this does not hold in general.

As mentioned above, the pole expansion of the Green’s dyadic is only valid inside the resonator.
Outside, the field divergence of the resonant states towards the far-field region prevents an
accurate description of the electromagnetic response. However, resonant states can be regularized
in the exterior [56,57]. Similarly, reciprocity principle can be used to derive the analytic
continuation of the near to the far fields [27,58]. Here, we are using the latter approach to
derive the pole expansion of the electromagnetic fields in the far-field region. More specifically,
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if {IN} and {ON} constitute sets of incoming and outgoing basis functions, respectively, that
are solutions of Maxwell’s equations in the exterior of the resonator with N as the quantum
number to distinguish the different modes, we may expand any total field in terms of these basis
functions as F =

∑
N α

in
N IN + α

out
N ON. Via reciprocity and orthogonality, we can then derive sets

of reciprocal-conjugate probe functions {IRN} such that

αout
N = i

∮
∂V

dS ·
(
ER

N ×H − E ×HR
N

)
. (19)

Details on the derivation of this relation can be found in [27], including appropriate basis
functions for certain geometries. In summary, by knowing the fields at the outermost interfaces
of a given resonator structure, e.g., based on the pole expansion of the fields via Eqs. (10) or
(18), we can thus construct the scattered field in the exterior at arbitrary wavenumbers. Note that
when using Eqs. (18) and (19), we fix the phase of the incoming and outgoing basis functions to
be zero across the normal direction of ∂V , since Eq. (19) must result in the decomposition of a
resonant state in terms of outgoing basis functions when approaching its complex wavenumber.

3. Analytic example

Let us now consider the simple example of a planar isotropic and homogeneous dielectric slab
with refractive index n2 in a symmetric environment with refractive index n1. At normal incidence,
the Fresnel equations for the amplitudes of reflection ρ and transmission τ at the top interface
of the slab (from medium 1 to 2) are given by ρ = (n1 − n2)/(n1 + n2) and τ = 2n1/(n1 + n2),
respectively. In that case, the total electric field is aligned parallel to the slab. Without the loss
of generality, we chose x-polarized fields with Etot = Etot x, where x is the unit vector along x
direction. Thus, fields inside and outside the structure can be written as

Etot (z; k) =


[
eikn1(z+d/2) − r(k)e−ikn1(z+d/2)

]
E0 ≡ Etop, for z ≤ −d/2; (20a)

τ
eikn2(z+d/2)−ρe−ikn2(z−3d/2)

1−ρ2e2ikn2d E0 ≡ Eint, for z ∈ [−d/2, d/2]; (20b)

t (k) eikn1(z−d/2)E0 ≡ Ebot, for z ≥ −d/2; (20c)

where E0 is the amplitude of the incidence plane wave. Note that our z axis is oriented from
top to bottom parallel to the wavevector of a normally incident field, as indicated in Fig. 1. The
coefficients r and t are the reflection and transmission amplitudes of the dielectric slab, with

r(k) = ρ
e2in2kd − 1
1 − ρ2e2in2kd

, t(k) = τ2
n2
n1

eikn2d

1 − ρ2e2in2kd
. (21)

The complex wavenumbers and internal field distributions of the resonant states in the slab are
given at normal incidence by [17,59]

kn =
nπ + i ln|ρ|

n2
d, (22)

En(z) =
(−i)n

2n2
√
d

[
eiknn2z + (−1)ne−iknn2z

]
, (23)

where n is an integer number. For EBG(z; k) = E0exp[ikn1(z + d/2)], the overlap integral in
Eq. (11) yields:

In(k) = E0
(−i)nik∆ε

√
d

2n2
eikn1d/2

{
sinc

[
d
2
(knn2 + kn1)

]
+ (−1)nsinc

[
d
2
(knn2 − kn1)

]}
. (24)

Here, sinc x = sin x/x. By employing Eq. (24) in Eq. (10), the total field can thus be expressed by
the formulation with dispersive expansion coefficients.
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For the Mittag-Leffler expansion of the total field, we need to investigate the asymptotic
behavior of Eq. (20). We can distinguish two cases:

lim
k→∞
|Etot (z; k)| ≤


2n1
|n2 − n1 |

|E0 | for z = −
d
2
; (25a)

0 otherwise. (25b)

The total field has a non-vanishing upper bound at the position of the top interface, so that the
global behavior of the fields can be captured only in a first-order Mittag-Leffler expansion. This
agrees with [39], where the pole expansion of the fields in a slab is derived by a different approach.
In order to obtain the final Mittag-Leffler expansion of the total field, we have to evaluate now
Eq. (24) at kn and insert it together with Eq. (23) and Etot(z; k = 0) = E0 into Eq. (18).

Fig. 2. (a) Real part of the electric field displayed inside a dielectric slab (from −0.5 µm
to 0.5 µm, parameters as in Fig. 1) and outside. (b) Real part of the electric field displayed
as a function of the z coordinate at an energy of 650meV [denoted by the red dashed line
in panel (a)]. In each panel, the analytic result is displayed as a black dotted line. From
top to bottom, the number of resonant states in the pole expansion is 9, 17, and 33. In the
columns, the pole expansion of the field has been calculated using the formulation with
dispersive expansion coefficients (left) as well as the first- (middle) and zeroth-order (right)
Mittag-Leffler expansion of the total field.

As test system, we consider a 1 µm thick slab made of GaAs (n2 = 3.5) and surrounded by
air. Figure 2(a) displays the field distribution as a function of the z coordinate and energy for a
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plane wave normally incident from the top. The interfaces are marked by black dashed lines.
The red dotted line denotes the energy, at which the different expansions of the field (solid
lines) are compared in panel (b). The fields in the left column are derived from the formulation
with dispersive expansion coefficients. The central and right columns display results using the
Mittag-Leffler expansion of the total field in first and zeroth order, respectively. The black dotted
lines denote the exact solution. The expansion of the fields is based on 9, 17, and 33 poles in the
top, middle, and bottom row, respectively. These poles are distributed symmetrically around
k = 0, i.e., we consider poles with the magnitude of the mode index |n| ≤ 4, 8, 16, see Eq. (22).

Expectedly, the agreement between analytic results and the different expansions becomes better
when increasing the number of poles. Almost no deviations can be seen inside the slab for 33
poles. Furthermore, we observe that the zeroth-order expansion of the total field does not agree
at the top half space. This is not surprising, because the zeroth-order Mittag-Leffler expansion is
not applicable at the top interface due to the asymptotic behavior at this interface, see Eq. (25a).

Let us examine the differences between the three approaches in more detail. For that purpose,
we calculated the deviation between the pole expansions and the analytic results inside the slab
at 650meV and display the results in Fig. 3(a) in a logarithmic scale. As expected, the largest
deviations are observed at the top interface when using the inappropriate zeroth-order expansion
of the total field (blue solid line). The fields based on the dispersive expansion coefficients (green
solid line) converge best at the top interface, but exhibit larger deviations at the bottom interface,
where the first-order results (red dotted line) agree best.

Fig. 3. (a) Absolute error of the electric field in logarithmic scale when using 33 resonant
states as basis for zeroth (blue solid line) and first-order (red dotted line) Mittag-Leffler
expansion of the total field as well as the formulation with dispersive expansion coefficients
(green solid line). (b) Normalized Fourier transform of the absolute error in dependence of
the spatial frequencies. (c) Evolution of the L2 error as a function of the number of resonant
states used for each of the three methods.

Figure 3(b) contains the Fourier transform of the deviation between exact results and their pole
approximation, which is normalized by the Fourier transform of the analytic field. We observe a
similar behavior for zeroth- and first-order expansion of the fields. The agreement to exact results
is best for small spatial frequencies. For large spatial frequencies, there is a saturation, with the
deviation being larger for the zeroth-order expansion. The reason for the saturation is that the
finite number of resonant states in the pole expansion captures only a finite number of low spatial
harmonics. For the results obtained by the formulation with dispersive expansion coefficients,
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the agreement also first decreases up to the spatial frequencies captured by the corresponding
number of poles, but it then decreases significantly to very low values. A possible reason is that
the k-dependent background field allows for a better description of the background contributions
to the fields.

Finally, we plot in Fig. 3(c) the convergence of the different approaches in dependence of the
number of poles for the resonant expansion. More specifically, we calculate the L2 error as

| |Eapp − Eref | |
2 =

∫
dz|Eapp − Eref |

2, (26)

with the integration being carried out over the entire slab region. It can be seen that the results
obtained by the formulation with dispersive expansion coefficients converge best, followed by the
first-order Mittag-Leffler expansion of the total field. The worst convergence is obtained when
using the zeroth-order Mittag-Leffler expansion of the total field.

4. Numerical examples of periodic structures

As first numerical example, we consider a one-dimensional dielectric grating with a periodicity
of 0.8 µm that consists of rectangular ZnSe rods in air with a refractive index of 2.6, a width of
0.53 µm, and a thickness of 0.1 µm. A schematic is shown in Fig. 4. Henceforth, we investigate
s-polarized incident plane waves with in-plane wave vector components kx = 0.5 µm−1 and
ky = 0.7 µm−1. Figure 5(a) displays the transmitted (blue) and reflected (red) intensity as
a function of photon energy. The numerical results have been obtained using our in-house
implementation of the Fourier modal method [60,61]. In the given range, the system exhibits
three resonant states at complex eigenenergies 1892− 15i meV, 2027− 150i meV, and 2370− 29i
meV. Their resonant field distributions are displayed in Fig. 4(b).

Fig. 4. (a) Schematic of a one-dimensional dielectric grating with definition of geometrical
parameters. (b) Normalized electric field intensity of three resonant states at 1892 − 15i
meV, 2027 − 150i meV, and 2370 − 29i meV inside the dielectric grating for period dx = 0.8
µm, width w = 0.53 µm, height h = 0.1 µm, and a grating refractive index of n = 2.6. The
incidence parameters are kx = 0.5 µm−1 and ky = 0.7 µm−1. The vertical dotted lines
indicate the interface positions, and the horizontal extension of the plots is over one unit cell.

Based on these resonant states, we then construct the pole expansion of the fields via the
formulation with dispersive coefficients and the Mittag-Leffler expansion of the total field. For
the latter, we consider only the first-order Mittag-Leffler expansion, since we have shown already
that a zeroth-order expansion is in general inappropriate. Furthermore, we do not calculate the
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background field in any expansion exactly, but we fit a polynomial of quadratic order to the
deviation between the pole contributions of the three resonant states and numerically exact results
at energies of 1700 meV, 2050 meV, and 2400 meV. Thus, we capture both the impact of the
background field as well as spectrally distant poles. The latter is particularly necessary even for
the formulation with dispersive expansion coefficients, because there are several resonances at
lower energies as well as the lowest-order Rayleigh anomaly that we do not account for in our
example.

Fig. 5. (a) Spectra of the dielectric grating shown in Fig. 4. The three resonant states of
Fig. 4(b) have been used for the pole expansions of the near fields. Their spectral position is
indicated by black arrows. (b) Relative L2 error of pole expansion integrated over one unit
cell of the structure along x and over the thickness of the grating plus 50 nm of superstrate
and substrate. As a reference, we used the field computed with the Fourier modal method.
(c-h) Map of the absolute value of electric field within the structure and its surrounding at
1870 meV (c-e) and 2225 meV (f-h). The electric field is calculated by the Fourier modal
method (b,e) as well as the first-order Mittag-Leffler expansion of the total field (d,g) and the
formulation with dispersive expansion coefficients (e,h). Note that the pole expansion of the
fields includes a quadratic fit of the background field at the positions of the gray arrows.

The relative difference of both Mittag-Leffler expansions to the numerically exact results is
displayed in Fig. 5(b). More specifically, we calculate the L2 error according to Eq. (26) by
integrating over one unit cell of the structure along x and over the thickness of the grating plus
50 nm of superstrate and substrate. Then, we normalize this absolute error by the integral over
|Eref |

2 of the numerically exact results. It can be seen that we achieve an overall good agreement
below 1 %. As expected, the deviation even drops to zero at the three energies of the background
fit. The difference between the two pole expansions is negligible.
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Panels (c-h) in Fig. 5 contain field magnitudes at energies of 1870 meV (left column) and
2225 meV (right column), which are close to the two resonant states at 1892 − 15i meV and
2370 − 29i meV. The rows display (from top to bottom) results based on full-wave simulations,
the first-order Mittag-Leffler expansion of the total field, and the formulation with dispersive
expansion coefficients. The small differences are hardly visible, while the calculation time for
obtaining 150 field distributions in the spectral range of Fig. 5(a) is twice as long with the full
numerical simulations as with the pole expansion approaches in our implementation, with the
expansion based on constant coefficients being slightly faster.
As second numerical example, we consider a two-dimensional metallic grating consisting of

periodically-arranged rectangular holes filled with air inside a slab made of gold, see Fig. 6(a).
The periodicity of the structure is 1.2 µm in x and y direction, and the slab is 50 nm thick. The
holes are 300 nm by 960 nm wide. The refractive index of the surrounding is assumed to be
1, the permittivity of gold is calculated using the critical point model [62]. For more complex
materials, a pole expansion can be fitted to tabulated data [63]. In the following, we account for
one resonant state at the complex eigenenergy 543 − 135i meV, see panel (c) in Fig. 6.

Fig. 6. (a) Schematic of gold film of thickness 50 nm with air holes of size 300 nm
times 960 nm in a square lattice configuration with period 1.2 µm. (b) Reflectance (red),
transmittance (blue), and absorbance (black) of the gold grating depicted in panel (a) for a
plane wave excitation at normal incidence from the top with field polarized along x. Panel
(c) displays the normalized electric field intensity of an exemplary resonant state of that
system at 543 − 135i meV. The resonance position is indicated by a black arrow in panel
(b). The field distributions displayed at the bottom panels are calculated at 537 meV [light
blue dashed vertical line in (b)] by the Fourier modal method (d), the formulation with
dispersive expansion coefficients (e), and the first-order Mittag-Leffler expansion of the total
field (f). The background contribution to the pole expansions has been fitted by a first-order
polynomial to exact results at 300 meV and 800 meV [indicated by the gray arrows in panel
(b)]. All field distributions are calculated in the xy plane of a unit cell, 12 nm below the top
interface [red dashed line in panel (a)].

The structure is excited from the top by a plane wave at normal incidence with the electric field
polarized along the x direction. Figure 6(b) displays the transmittance (blue), reflectance (red),
and absorbance (black) as a function of photon energy. As in the previous example, the numerical
results have been obtained using the Fourier modal method, including the field distribution in
Fig. 6(d), which is derived at 537 meV inside the structure 12 nm below the top interface.
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Using the aforementioned resonant state, we then calculated the electric field by the formulation
with dispersive expansion coefficients (e) and the first-order Mittag-Leffler expansion of the total
field (f). The background field and the spectrally distant poles have been fitted via polynomials
of first order accounting for the deviation between the pole contributions of the resonant states
and numerically exact results at energies of 300meV and 800meV. The fastest approach is based
on the Mittag-Leffler expansion of the full field, but the fields based on the formulation with
dispersive expansion coefficients are more accurate, as can be seen by the small deviations
between panels (e) and (f) of Fig. 6.

Finally, it should be noted that we do not include any results of Eq. (12) here, because those are
comparable to that of Eq. (10) for the numerical examples, while Eq. (12) does not work properly
for the dielectric slab. This is probably due to a slow convergence of the sum rule mentioned
after Eq. (12).

5. Conclusion

We have compared different formulations of the pole expansion of electromagnetic near fields
for the analytical example of a homogeneous and isotropic slab as well as for the numerical
examples of a dielectric and a metallic grating. The most common formulation based on the
formulation with dispersive expansion coefficients yields globally the best agreement. Locally,
the first-order Mittag-Leffler expansion of the total field, which we developed here, can be
superior. Moreover, this approach includes constant weight factors for the pole contribution, so
that it is typically faster. This means that the formulation based on the first-order Mittag-Leffler
expansion is preferable whenever it is necessary to calculate the spectral response at many
different wavenumbers. However, a zeroth-order expansion of the total field is inappropriate for
the pole expansion of the fields.
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