Electrically switchable metasurface for beam steering using PEDOT polymers

To cite this article: Juliane Ratzsch et al 2020 J. Opt. 22 124001

View the article online for updates and enhancements.
Electrically switchable metasurface for beam steering using PEDOT polymers

Juliane Ratzsch¹, Julian Karst¹, Jinglin Fu¹, Monika Ubl¹, Tobias Pohl¹, Florian Sterl¹, Claudia Malacrida², Matthias Wieland², Bernhard Reineke³, Thomas Zentgraf³, Sabine Ludwigs², Mario Hentschel¹ and Harald Giessen¹

¹ 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
² IPOC-Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
³ Department of Physics, Paderborn University, 33098 Paderborn, Germany

E-mail: h.giessen@pi4.uni-stuttgart.de

Received 17 June 2020, revised 2 October 2020
Accepted for publication 2 November 2020
Published 27 November 2020

Abstract
Switchable and active metasurfaces allow for the realization of beam steering, zoomable metalenses, and dynamic holography. To achieve this goal, one has to combine high-performance metasurfaces with switchable materials that exhibit high refractive index contrast and high switching speeds. In this work, we present an electrochemically switchable metasurface for beam steering where we use the conducting polymer poly(3,4-ethylenedioxythiophene) as an active material. We show beam diffraction with angles up to 10° and a change of the intensities of the diffracted and primary beams employing an externally applied cyclic voltage between −1 V and +0.5 V. With this unique combination, we realize switching speeds in the range of 1 Hz, and the extension to typical display frequencies in the region of tens of hertz is possible. Our findings have immediate implications for the design and fabrication of future electronically switchable and display nanotechnologies, such as dynamic holograms.

(Supplementary material for this article is available online)

Keywords: nano-optics, plasmonics, switchable metasurface, PEDOT, electrochemistry, beam steering

(Some figures may appear in colour only in the online journal)

1. Introduction

The manipulation of optical wavefronts via lenses, mirrors, or any other optical devices is present in our everyday lives. This includes bulky lenses made from glasses, Fresnel lenses in smartphone illumination optics, and spatial light modulators and liquid crystals in displays. However, emerging display technologies such as dynamic holography or augmented and virtual reality require ever-increasing pixel densities and thus new smart optical methods with the ability to manipulate optical wavefronts, beam paths, polarization, and similar activities on ultra-small length scales [1–3]. To meet this demand, there has been a significant increase in interest in the research field of plasmonics over the last years as plasmonic nanoparticles allow one to focus, manipulate, or steer optical fields in a variety of applications.
light on the nanometer scale at subwavelength dimensions [4–6]. The combination of optically active and externally switchable materials with plasmonics into hybrid nanosystems has increased their applicability even further and opened the door towards active plasmonically driven light manipulation [7]. Plasmonic metasurfaces that are artificial sheet materials with sub-wavelength thickness are particularly good at allowing the realization of flat optical components with unique optical properties [8–13]. Furthermore, the combination with phase change materials enables active plasmonic optical applications such as active beam switching [14, 15], zoom lensing [16], dynamic holography [17], dynamic plasmonic color displays [18, 19] and many more. One possibility to realize these hybrid nanosystems is the fabrication of nanoparticles directly from phase change materials such as magnesium [20–23], palladium [24–27], and yttrium [28]. Additionally, phase change materials such as polyaniline [29, 30], germanium–antimony–tellurium-based films (GST) [31–34], liquid crystals [35, 36], or VO [37, 38] are widely used in combination with nanoparticles to allow for active switching. However, widespread and commercial applications have so far been hindered by several limiting factors such as material degradation, slow switching speeds, low optical contrast (refractive index shifts). Even more, most material phase transitions are only accessible via variations in, for example, temperature or exposed gases and not electrically.

Here, we present an optically active system to perform switchable beam steering realized via a novel hybrid metasurface. It consists of a unique combination of gold plasmonic nanoantennas and the electrically switchable and conducting polymer poly(3, 4-ethylenedioxythiophene) (PEDOT) [39, 40]. We show that tuning of geometric parameters allows for switching angles and beam diffraction of up to 10°, while the efficiency of the hybrid metasurface and thus the intensity of diffracted light can be actively controlled via an externally applied cyclic voltage between only −1 V and +0.5 V. An increase of the scan rate of the cyclic voltammetry reveals switching frequencies close to 1 Hz, while an extension to typical display frequencies in the range of tens of hertz is possible, only limited by the measurement components.

2. Experimental details

In order to design the plasmonic nanostructures, we used the transient solver of CST Microwave Studio Suite in a wavelength range between 600 nm and 1200 nm. Figure 1(a) shows the material stack and geometries of the simulated system. We simulated a single unit-cell with open boundary conditions in the z-direction to emulate free space and periodic boundary conditions in the x-direction and y-direction to simulate an infinite array of antennas. To optimize the on/off behavior, we performed two simulations—one series with the refractive index of the reduced PEDOT and one sequence with the oxidized PEDOT. With a parameter scan, the geometry was optimized to find an antenna geometry, which leads to a significant shift of the plasmonic resonance when the refractive index of the PEDOT changes. The resulting amplitude and phase spectra of the transmission coefficient for cross- and co-polarization can be found in figure S1 (available online at https://stacks.iop.org/JOPT/22/124001/mmedia) in the supplementary information. The resonance shift allows us to turn on and off the anomalous refraction of the plasmonic antenna array at a specific wavelength. The refractive index of PEDOT was taken from Stockhausen et al [39]. Further, the refractive index of gold was taken from Yakubovsky et al [41].

The final metasurface consists of gold nanoantenna arrays with progressively rotated elements along one axis [42], as shown in the SEM images in figure 1(b). Fabrication is done via electron-beam lithography (Raith eLine Plus). The antennas have a size of 200 × 135 nm, a thickness of 50 nm, and a period of 300 nm in the x-direction and y-direction and are placed on a glass substrate covered with a thin layer (20 nm) of indium–tin–oxide (ITO) for electrical contact. Adjacent antennas are rotated with an incremental rotation angle of 6°. The resulting super period after 180° rotation is 9 µm and comprises 30 antennas, as marked in the lower SEM image in figure 1(b). When illuminating this metasurface with the circularly polarized light of one handedness, the design results in an additional transmitted beam that is diffracted from the main beam by several degrees and possesses opposite circular polarization. To make our hybrid metasurface electrically switchable in the visible spectral range, we cover the metasurface with a 150–200 nm thick PEDOT layer which is deposited by electropolymerization [43, 44]. This PEDOT layer undergoes a significant refractive index change in the visible spectral range when the applied voltage is varied by cyclic...
voltammetry [45] and thus results, in combination with the metasurface, in electrochemically activated switchable beam steering. Please note that modifying the deflection angles or similar would require an active change of the metasurface parameters (antenna geometry, spacing, etc) or the combination of multiple metasurfaces. So far, this is not possible with our hybrid metasurface design. See figure S2 in the supplementary information for details on the electrodeposition and structural change of PEDOT.

A schematic drawing of our main setup used to perform angle-resolved imaging is shown in figure 2(a). It consists of a modified transmission microscope (Nikon Eclipse TE2000-U) in combination with a home-built k-space imaging module [27]. We use a tunable laser (NKT Photonics SuperK Extreme) as an illumination source, set at a wavelength of $\lambda = 750$ nm. To obtain right-circularly polarized light we use a polarizer (Thorlabs LPVIS100) and a broadband quarter-wave plate (QWP) (B. Halle RAC 5.4.20). As we image in k-space, the condenser is set highly defocused to allow for the best possible normal incidence on the metasurface. The metasurface is placed at the sample position in the front focal plane of the objective (Nikon Plan Fluor ELWD 40x, N.A. 0.60), which collects the main transmitted and the diffracted beam. The diffracted beam is left-circularly polarized and thus possesses the opposite circular polarization compared to the main beam. Consequently, a circular analyzer consisting of another QWP (B. Halle RAC 5.4.20) and polarizer (Thorlabs LPVIS100) allows for the adjustment of the intensity of two beams. As the main beam is more intense in our experiments, we use this circular analyzer to attenuate the main beam, resulting in similar intensities of both beams before starting the switching experiment. To be able to resolve the diffraction angles of the two beams, we directly image the objective back focal plane (k-space) with a modified 4-f setup [46] on a charge-coupled device (CCD) camera (Allied Vision GC2450C). As schematically depicted in figure 2(a), the sample is placed inside a custom-made electrochemical cell to perform cyclic voltammetry on the active PEDOT layer with a three-electrode setup. A schematic drawing of the electrochemical setup is shown in figure 2(b). As the electrolyte, we use a 0.1 mol l$^{-1}$ CH$_3$CN/But$_3$NPFe$_6$ solution. We attach the working electrode (platinum (Pt) wire) to the electrically conducting and partially uncovered ITO layer underneath the metasurface. The counter electrode (Pt wire) and reference electrode (silver chloride silver wire, Ag/AgCl) are in contact with the electrolyte solution. The reference electrode is placed near the working electrode to minimize Ohmic drops of the voltammogram. Finally, the three electrodes are connected to a potentiostat (BioLogic SP-200) to perform cyclic voltammetry between -1 V and $+0.5$ V vs. Ag/AgCl. The typical voltammogram of the PEDOT deposited on our metasurface and a ferrocene reference are shown in figure S2 in the supplementary information.

3. Results and discussion

The effect of beam steering is obtained via the refractive index shift of the PEDOT layer during cyclic voltammetry.

Figure 2. (a) Schematic of the k-space setup used to measure the diffraction of the actively switchable metasurface. The main incident beam is right-circularly polarized (RCP), while the diffracted beam is left-circularly polarized (LCP). The circular analyzer (second pair of QWP and Pol) allows for diminishing the main beam. (b) Schematic of the electrochemical cell where the PEDOT is actively switched via cyclic voltammetry.

This change in the refractive index causes the plasmonic resonance of the metasurface to shift and thus the efficiency of the beam diffraction to vary. The spectral response of our hybrid metasurface is shown in figure 3(a). For spectral measurements, we replace the k-space imaging module in figure 2(a) with a grating spectrometer (Princeton Instruments SP2500i) and a Peltier-cooled front-illuminated CCD camera (Acton PIXIS 256E). In the oxidized state (red curve), we find a broad plasmonic resonance with a centroid wavelength around $\lambda_{c,O} = 760$ nm. In contrast, the plasmonic resonance in the reduced state (blue curve) is red-shifted by approximately 85 nm to a centroid wavelength around $\lambda_{c,R} = 845$ nm. Overall, this matches the spectral shift expected from the refractive index shift of PEDOT [43, 45]. Furthermore, a spectral transmission peak around $\lambda = 720$ nm is found in the reduced state. This peak originates from the overlay of the plasmonic resonance dip at $\lambda_{c,R} = 845$ nm and the intrinsic PEDOT material transmission dip (absorption peak) around $\lambda = 600$ nm. This material resonance is also visible in the transmission spectra of only the electropolymerized PEDOT layer in the oxidized and reduced states, which can be found in figure S3 in the supplementary information. The temporal behavior of the centroid wavelength during cyclic voltammetry is depicted in figure 3(b). The upper graph shows the centroid wavelength versus time for a total of four cycles. The centroid wavelengths are determined from the spectral responses of the metasurface from figure 3(a). Centroids of the metasurface in the reduced
state ($\lambda_{c,R}$) and the oxidized state ($\lambda_{c,O}$) are marked in blue and red, respectively. The lower graph in figure 3(b) depicts the voltage cycling between -1 V and $+0.5$ V with a scan rate of 20 mV s$^{-1}$. We find that the centroid wavelength cycles between the oxidized and reduced states and that the PEDOT and thus the hybrid metasurface respond immediately to changes in the voltage. The reduced and oxidized states are separated from each other, which allows for stable cycling between the two distinct optical states. Furthermore, the switching is reproducible over several cycles with no indication of any degradation.

As our hybrid metasurface is designed to allow for switchable beam steering in the visible spectral range, we now turn our attention to angle-resolved k-space imaging, as illustrated in figure 4. The beam profiles and intensities of the zeroth-order main and first-order diffracted beam in k-space are illustrated in figures 4(a) and (b) for the oxidized and reduced states, respectively (illumination wavelength $\lambda = 750$ nm). The lower graphs depict the spatially resolved intensity in k-space, whereas the upper graphs show the corresponding integrated intensities. Overall, we find a Gaussian beam profile of both beams. Please note that the intensities are obtained by converting the CCD camera images from sRGB to linear RGB. In the oxidized state in figure 4(a), the diffracted beam I_1 has a higher intensity in comparison to the main beam I_0. In contrast, this relation inverts for the reduced state in figure 4(b), as here the diffracted beam has a lower intensity than the main beam. We find that the total intensity of both beams increases, which results from the overall higher transmittance of the hybrid metasurface in the reduced state at $\lambda = 750$ nm (compare to figure 2(a)). The diffraction of this designed hybrid metasurface in k-space is $k_\chi = \sin \theta_\chi = 0.085$, which corresponds to a diffraction angle of $\theta_\chi = 4.9^\circ$. By changing the super period of the metasurface, we can increase the diffraction angle to $\theta_\chi = 10^\circ$. The k-space and temporal response that depend on the applied voltage of this modified metasurface are shown in figure S4 in the supplementary information.

For potential applications as light modulators, it is important to determine the modulation efficiency of our metasurface. In detail, we determine two quantities necessary to quantify our metasurface relative to the existing literature. The first parameter, the basic efficiency,

$$\eta^{\text{ox}} = \frac{I_1^{\text{ox}}}{I_0^{\text{ox}}/a},$$

is calculated via the intensity ratio of the diffracted beam I_1^{ox} and the main beam I_0^{ox} in the oxidized PEDOT state. Please note that we introduce and experimentally determine the attenuation coefficient a, which originates from the attenuation of the main beam I_0 via the QWP (see figure 2(a)). Consequently, we obtain the efficiency values of the metasurface in figure 4 of $\eta^{\text{ox}} = 3.67\%$. The efficiency of the modified metasurface in figure S4 is $\eta^{\text{ox}} = 0.83\%$.

A second quantity to compare is the figure of merit [47]:

$$\text{FOM} = \frac{1}{2} \left(C^{\text{ox}} - C^{\text{red}} \right) = \frac{1}{2} \left(\frac{I_1^{\text{ox}}}{I_0^{\text{ox}}} a - \frac{I_1^{\text{red}}}{I_0^{\text{red}}} a + \frac{I_1^{\text{red}}}{I_0^{\text{red}}} - \frac{I_1^{\text{ox}}}{I_0^{\text{ox}}} \right),$$

where $I_1^{\text{ox}}, I_1^{\text{red}}, I_0^{\text{ox}}, I_0^{\text{red}}$ are the intensities of the diffracted and main beam in the oxidized and reduced states, respectively. C^{ox} and C^{red} denote the contrasts in the oxidized and reduced states, respectively. A complete transfer of the intensity from the main beam to the diffracted beam during switching would result in FOM = 1. For our metasurface in figure 4, we obtain a value of FOM = 0.05, whereas for the modified metasurface in figure S4 we obtain FOM = 0.01. These values are small compared to other active metasurface designs in the literature [47], which most likely originates from the comparably small refractive index shift of PEDOT in the visible spectral range.

The intensity ratio I_1/I_0 of our initial metasurface during cyclic voltammetry is plotted in figure 4(c). Please note that due to the reduced intensity of the main beam I_0, the

Figure 3. Spectral shift of the plasmonic resonance of the hybrid metasurface. (a) Transmittance of the metasurface in the oxidized state (red) and reduced state (blue) of PEDOT at the extrema during cyclic voltammetry (oxidized and reduced PEDOT). (b) Centroid wavelength and applied voltage over time. The voltage is measured versus a Ag/AgCl pseudoreference electrode. Marked are $\lambda_{c,O}$ of the oxidized state and $\lambda_{c,R}$ of the reduced state of PEDOT.
absolute value of the intensity ratio I_1/I_0 is in fact smaller, as we discussed above for the calculation of the efficiency of the metasurface. A further increase of the intensity ratio and thus diffraction efficiency might be possible by considering other metasurface designs with modified design parameters (metasurface material, antenna geometry, operating wavelength, variation of active material, and many more). Again, we find that the hybrid metasurface quickly reacts to voltage changes. In the oxidized state after $t = 24$ s, the ratio has a sharp maximum, whereas in the reduced state after $t = 104$ s we find a flat plateau around the minimum. The observed temporal behavior of the intensity ratio clearly shows that we can actively control the intensity of both beams. The intensities of the individual beams during cyclic voltammetry are plotted in figure S5 in the supplementary information. The variations in the beam intensities do not originate from a simple transmittance change of the PEDOT, which would result in a temporal constant intensity ratio I_1/I_0, but rather from a change in the diffracted intensity due to its refractive index change and subsequent tuning of the metasurface plasmonic resonance. We find from the individual beam intensities in figure S5 that it is, in fact, possible to vary the diffracted beam intensity individually while the intensity of the main beam remains constant. Thus, the ‘gained’ intensity in the diffracted beam needs to result in a reduced intensity in higher-order beams and background (mostly diffuse scattering). Consequently, we are able to vary the diffraction efficiency of the hybrid metasurface via the applied voltage. Selected k-space images of this beam steering process are depicted in figure 4(d). A video showing all frames can be found in the supplementary information. The positions of the main (I_0) and diffracted beams (I_1) are marked with arrows.

We observe the switching behavior of the metasurface cycling between higher intensity in the diffracted beam and higher intensity in the main beam.

For practical applications in active and zoomable lens designs or future display technologies, active metasurfaces ideally should have switching speeds at typical display frequencies in the range of tens of hertz. Consequently, as a final step we investigate the response and switching time of our hybrid metasurface by varying the scan rate during cyclic voltammetry. The results are depicted in figure 5 for scan rates
When increasing the scan rate to 400 mV s$^{-1}$, we see in figure 5(b) that, as expected, we lose temporal resolution in the response curve of the hybrid metasurface, which becomes even more prominent for a scan rate of 1500 mV s$^{-1}$. Here, we switch between oxidized and reduced states of PEDOT within 1 s, which results in a period of 2 s or a frequency of 0.5 Hz. At this scan rate, the individual data points are far spaced and become clearly visible in the intensity ratio curve. Please note that the time resolution in our experiment is set by the exposure time of the CCD camera. The individual data points in the upper panel of figure 5(c) are temporarily spaced at $\approx 200–300$ ms, which corresponds to the sum of the exposure time of 120 ms and a short time for the software to store each individually captured image. Nevertheless, the hybrid metasurface still oscillates/cycles reproducibly between its oxidized and reduced states. Consequently, the switching speed is limited in our experiment by the sensitivity and thus exposure time and frame rate of our CCD camera and is not intrinsically limited by the switching speed of the PEDOT layer. In fact, an extension of the switching speeds of our hybrid metasurface to typical display frequencies (tens of hertz) should be possible by exchanging the cyclic voltammetry with a direct setting (step-function) of applied voltages of $+0.5$ V and -1 V. Furthermore, several other factors contribute to define the switching speed, which is discussed in the supplementary information.

4. Conclusion

In conclusion, we have demonstrated a novel approach for an optically active and externally and electrically switchable hybrid metasurface. We presented a unique combination of a metasurface comprising gold nanoantennas and an electropolymerized PEDOT, which allowed for electrochemically activated switchable beam steering. The feasibility of this combination for potential nanophotonic applications was demonstrated via a detailed investigation of the optical and temporal properties of the hybrid metasurface. We used Fourier-space imaging to reveal switching and diffraction angles of up to 10° with excellent conservation of the beam profiles in the first diffraction order. A temporal investigation of the intensities of the main and diffracted beams showed that we were able to actively control the efficiency of the metasurface and thus the intensity of the diffracted and primary light. We reached switching frequencies around 1 Hz, while the extension to display frequencies was only limited by the measurement components and not intrinsically by the optical and electrical properties of our hybrid metasurface. Overall, our approach holds immediate implications for the design, fabrication, and realization of optically active nanophotonic systems that are electrically switchable. Our results will help in the development of future optical technologies such as virtual and augmented reality and dynamic holography.

Acknowledgments

We acknowledge financial support from the European Research Council (ERC Advanced Grant Complexplas), Bundesministerium für Bildung und Forschung, Deutsche
Forschungsgemeinschaft (SPP1839 Tailored Disorder and SPP1391 Ultrafast Nanoanalytics), and IQST (Integrated Quantum Science and Technology). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 724306). This publication was supported by the Open Access Publishing Fund of the University of Stuttgart.

Conflict of interest

The authors declare no conflicts of interest.

ORCID iDs

Julian Karst https://orcid.org/0000-0003-2422-8926
Florian Sterl https://orcid.org/0000-0002-1025-6777
Thomas Zentgraf https://orcid.org/0000-0002-8662-1101
Sabine Ludwigs https://orcid.org/0000-0002-6717-8538
Mario Hentschel https://orcid.org/0000-0002-6882-4183
Harald Giessen https://orcid.org/0000-0002-4270-3850

References

[33] Gholipour B, Zhang J, MacDonald K F, Hewak D W and Zheludev N I 2013 An all-optical, non-volatile,
bidirectional, phase-change meta-switch Adv. Mater. 25 3050–4

[38] Briggs R M, Pryce I M and Atwater H A 2010 Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition Opt. Express 18 11192

