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Abstract: In life science and health research one observes a continuous need for new concepts and
methods to detect and quantify the presence and concentration of certain biomolecules—preferably
even in vivo or aqueous solutions. One prominent example, among many others, is the blood glucose
level, which is highly important in the treatment of, e.g., diabetes mellitus. Detecting and, in particular,
quantifying the amount of such molecular species in a complex sensing environment, such as human
body fluids, constitutes a significant challenge. Surface-enhanced infrared absorption (SEIRA)
spectroscopy has proven to be uniquely able to differentiate even very similar molecular species
in very small concentrations. We are thus employing SEIRA to gather the vibrational response of
aqueous glucose and fructose solutions in the mid-infrared spectral range with varying concentration
levels down to 10 g/l. In contrast to previous work, we further demonstrate that it is possible to not
only extract the presence of the analyte molecules but to determine the quantitative concentrations in
a reliable and automated way. For this, a baseline correction method is applied to pre-process the
measurement data in order to extract the characteristic vibrational information. Afterwards, a set of
basis functions is fitted to capture the characteristic features of the two examined monosaccharides
and a potential contribution of the solvent itself. The reconstruction of the actual concentration levels
is then performed by superposition of the different basis functions to approximate the measured data.
This software-based enhancement of the employed optical sensors leads to an accurate quantitative
estimate of glucose and fructose concentrations in aqueous solutions.

Keywords: glucose; fructose; glucose sensor; bio sensing; surface-enhanced infrared absorption;
asymmetric least squares smoothing; superposition method

1. Introduction

The reliable detection and identification of minute analyte concentrations in complex
environments has been a long-standing problem, in particular in health care, life science, and point of
care applications. In recent years the detection of glucose has attracted particular interest, as it is a
highly important molecule in the human diet and metabolism. The, ideally, continuous monitoring of
blood sugar levels is crucial for the treatment of, e.g., diabetes mellitus, with an ever growing number
of patients [1–4]. This sensing task is, in fact, a very challenging one. Not only are the concentrations
of glucose in the human blood or in the ocular fluid (as an easy-to-access system) very small, their
detection is also hurdled by the extremely large number of additional molecular species in these body
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fluids [5–7]. A particular challenge lies with the other monosaccharides, which have extremely similar
physical properties and might obstruct the real glucose concentration.

A few particular interesting sensor concepts are related to plasmonics-based systems. Plasmonics,
or noble metal nanoparticle optics, utilize the large number of quasi-free conduction electrons in noble
metals [8,9]. If a gold nanoparticle is illuminated by an external light field of appropriate wavelength,
the quasi-free conduction electrons oscillate with respect to the fixed ionic background of the particle.
As a consequence, this resonance is associated with so-called local near-fields in the close vicinity of the
particle, which are significantly stronger than the far-field plane wave intensity. These local fields can
be utilized for so-called refractive index sensors [10–12]. If an analyte molecular enters the near-fields,
the far-field resonance will spectrally shift. This shift can be used as a highly sensitive sensor down
to a few or even a single molecule [13,14]. However, without appropriate functionalization, such
a sensor cannot distinguish different analyte molecules, as it only reports refractive index changes.
While functionalization is possible, it is often highly complex, still sensitive to a certain cross-talk with
similar molecules, and also tends to degrade rather quickly [15,16]. All of these points are, in particular,
valid for complex and highly multi-entity environments, such as the human blood and any other
body fluids.

Infrared spectroscopy, on the other hand, is known for its supreme specificity [17]. The infrared
spectra of biomolecules show characteristic absorption features which allow to unambiguously identify
molecular species. This spectral region is therefore often called the fingerprint region and the spectral
signatures the molecular fingerprints. However, while specificity is excellent, there is little sensitivity.
In general, large amounts of analyte are needed in order to acquire infrared absorption spectra. Here,
again, the complex nature of the investigated samples comes as a challenge.

Fortunately, it has been shown that the best of both of these techniques can be combined in surface
enhanced infrared absorption (SEIRA) spectroscopy [18]. SEIRA spectroscopy has been studied in
great detail in order to uncover the basic working principle [19]. Generally speaking, the utilized
plasmonic nanoparticles or nanoantennas are designed such that their plasmonic resonances are close
to the molecular absorption bands. When the target molecular species enters the locally enhanced
near-fields of the antennas, the vibrational modes and the plasmonic mode couple. As a consequence,
the very strong and bright optical response of the plasmonic antenna is imprinted with the signature of
the molecular species [19]. An enhancement of up to six orders of magnitude can be observed [18]. This
allows to measure very small amounts of analyte in nanoscale volumes while simultaneously allowing
to unambiguously identify the molecular species based on the unique vibrational signatures [20–23].
The basic working principle of SEIRA has been fully understood, making it a routine method for
the investigation of other systems, species, or entities. Besides the observation of molecular species,
for example during folding and unfolding of proteins [24,25], SEIRA has also been used for the
investigation of the plasmonic resonances themselves, e.g., for the extend and intensity of the local
near-fields [26,27].

2. Materials and Methods

Glucose and fructose, as our model system, show, in fact, distinct vibrational modes in the
infrared spectral range [28]. This fact allows us to distinguish these two species. Figure 1 illustrates our
measurement concept. Resonant gold nanoantennas are incorporated into a flow cell which allows us
to flush different aqueous analyte solutions over the antennas while simultaneously acquiring infrared
reflection spectra. The reflection spectra contain the signature of the plasmonic resonance as well as
the imprinted vibrational modes of the analyte molecules. As sketched, these differ for glucose and
fructose. Apart from the mere presence of the analyte molecules, it should be possible to also extract
the concentration of the molecules from the measurements as a higher concentration leads to a larger
modulation depth of the vibrational features.
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Figure 1. Measurement principle and sensor design. Aqueous pure glucose and fructose 
solutions as well as mixed solutions are flushed over plasmonic nanoatennas resonant with 
the characteristic mid-infrared vibrational modes of these monosaccharaides. The tailored 
flow cell allows to simultaneously acquire reflectance spectra, as sketched on the right hand 
side. The reflectance peaks of the antennas are modified by the vibrational signatures of the 
molecular species present in the analyte. From their spectral position the molecular species 
can be determined, from their modulation depth, in principle, the concentration, given 
appropriate evaluation and calibration, which is the key result reported here. 

While the general concept is straightforward, there are in fact a number of challenges when 
aiming for a quantitative analysis. Firstly, the contribution of the plasmonic resonance has to be 
removed from the data. This is in general achieved by the so-called baseline correction. However, the 
exact modulation of the remaining features is found to depend significantly on the exact baseline. 
While this is of no further concern for identifying a molecular species, it is a significant hurdle in 
determining quantitative concentrations. We thus need a stable routine that allows us to “calibrate” 
our sensor scheme for concentration levels, that is, correlate the modulation depth of the molecular 
features with the concentration of molecules present. This calibration must not be disturbed by 
varying baseline corrections. We are going to show that we are indeed able, using a global baseline 
correction and an adaptive algorithm for basis function approximation, to extract these absolute 
values. 

Within the scope of this work, two different monosaccharides are examined with the proposed 
method. Due to their importance in health science, aqueous solutions of monosaccharaides are 
investigated. Glucose is a highly important biological molecule and its concentration in the blood or 
other body fluids needs to be determined with high accuracy. The primary hurdle lies in the presence 
of other biomolecules in, e.g., the blood or tear liquid. In particular, the other monosaccharaides cause 
problems in identifying the correct concentration [29]. As a model system, we therefore utilize 
aqueous solutions of different glucose and fructose concentrations in order to establish a robust 
routine for quantitative concentration determination. The proposed procedure to achieve this goal is 
schematically depicted in Figure 2.  

As mentioned above, our sensor data is obtained from SEIRA measurements. We collected a 
large set of reflective SEIRA spectra of different pure glucose and fructose as well as mixed solutions, 
as published elsewhere [28]. In brief: We utilize a reflection flow cell in inverse geometry, which is 
flushed via attached tube connectors that transport the desired solutions into and out of the flow cell. 
The key parts of our sensor are the different linear gold antenna arrays which were fabricated with 
electron beam lithography on top of IR transparent calcium fluoride substrates. The choice of the 
plasmonic element is motivated by the following aspects: Ease of structure fabrication, chemical 
stability, quality of the plasmonic resonance in terms of linewidth and amplitude, as well as 
resonance position. While there are many highly sophisticated structures and systems, which include, 
among the noble metals, also graphene [20,30–34], we choose the most straightforward realization 
via dipolar gold nanoantennas. These antennas have shown excellent quality factors, large dipole 
moments, are chemically inert, and can be easily fabricated via many bottom-up and top-down 

Figure 1. Measurement principle and sensor design. Aqueous pure glucose and fructose solutions as
well as mixed solutions are flushed over plasmonic nanoatennas resonant with the characteristic
mid-infrared vibrational modes of these monosaccharaides. The tailored flow cell allows to
simultaneously acquire reflectance spectra, as sketched on the right hand side. The reflectance peaks of
the antennas are modified by the vibrational signatures of the molecular species present in the analyte.
From their spectral position the molecular species can be determined, from their modulation depth,
in principle, the concentration, given appropriate evaluation and calibration, which is the key result
reported here.

While the general concept is straightforward, there are in fact a number of challenges when aiming
for a quantitative analysis. Firstly, the contribution of the plasmonic resonance has to be removed
from the data. This is in general achieved by the so-called baseline correction. However, the exact
modulation of the remaining features is found to depend significantly on the exact baseline. While this
is of no further concern for identifying a molecular species, it is a significant hurdle in determining
quantitative concentrations. We thus need a stable routine that allows us to “calibrate” our sensor
scheme for concentration levels, that is, correlate the modulation depth of the molecular features with
the concentration of molecules present. This calibration must not be disturbed by varying baseline
corrections. We are going to show that we are indeed able, using a global baseline correction and an
adaptive algorithm for basis function approximation, to extract these absolute values.

Within the scope of this work, two different monosaccharides are examined with the proposed
method. Due to their importance in health science, aqueous solutions of monosaccharaides are
investigated. Glucose is a highly important biological molecule and its concentration in the blood or
other body fluids needs to be determined with high accuracy. The primary hurdle lies in the presence
of other biomolecules in, e.g., the blood or tear liquid. In particular, the other monosaccharaides cause
problems in identifying the correct concentration [29]. As a model system, we therefore utilize aqueous
solutions of different glucose and fructose concentrations in order to establish a robust routine for
quantitative concentration determination. The proposed procedure to achieve this goal is schematically
depicted in Figure 2.

As mentioned above, our sensor data is obtained from SEIRA measurements. We collected a
large set of reflective SEIRA spectra of different pure glucose and fructose as well as mixed solutions,
as published elsewhere [28]. In brief: We utilize a reflection flow cell in inverse geometry, which is
flushed via attached tube connectors that transport the desired solutions into and out of the flow
cell. The key parts of our sensor are the different linear gold antenna arrays which were fabricated
with electron beam lithography on top of IR transparent calcium fluoride substrates. The choice of
the plasmonic element is motivated by the following aspects: Ease of structure fabrication, chemical
stability, quality of the plasmonic resonance in terms of linewidth and amplitude, as well as resonance
position. While there are many highly sophisticated structures and systems, which include, among the
noble metals, also graphene [20,30–34], we choose the most straightforward realization via dipolar
gold nanoantennas. These antennas have shown excellent quality factors, large dipole moments,



Sensors 2019, 19, 3053 4 of 15

are chemically inert, and can be easily fabricated via many bottom-up and top-down techniques.
All of these aspects are also highly relevant for future applications. The geometrical parameters
of the nanoantennas are chosen such as to exhibit a plasmon resonance at the spectral position of
the targeted molecular vibrations of glucose and fructose, resulting in a length of 3500 nm, width,
and thickness of 100 nm (over a 2 nm chromium adhesion layer), periodicity 4500 nm in x direction
and 3000 nm in y direction [35,36]. For the spectral measurements, we use a commercial FTIR
spectrometer (Bruker VERTEX 80, Bruker Optik GmbH, 76275 Ettlingen, Germany) and an optical
microscope (Bruker Hyperion 2000, Schwarzschild objective with 15-fold magnification, NA = 0.4,
Bruker Optik GmbH, 76275 Ettlingen, Germany). The spectra are measured with a nitrogen-cooled
mercury cadmium telluride (MCT) detector and referenced to a gold mirror. The measurements spot
is about 90 µm × 90 µm. Top-down electron beam lithography is a very well established technique
leading to highly uniform structures which result in highly uniform optical properties of the elements.
Additionally, the measured area contains a significant number of elements, leading to an effective
ensemble averaging, minimizing the contribution of the individual, single object.
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Figure 2. Schematic description of the developed adaptive process for evaluation of surface enhanced
infrared absorption (SEIRA) measurement data to quantitatively estimate glucose and fructose
concentrations in aqueous solutions.

In general each SEIRA spectrum is a combination of the signature of the plasmonic resonance
and the vibrational features which are characteristic for the molecular species. Since we are interested
in the pure vibrational spectrum of the examined specimens, the plasmonic background has to be
removed first. This can be achieved with, e.g., asymmetric least squares smoothing (ALSS) for baseline
correction [37]. Thereby, it is possible to reconstruct the unperturbed plasmonic resonance or at least
approximate it sufficiently. Afterwards, the pure vibrational data rBC is obtained by dividing the
measured SEIRA spectrum by the reconstructed baseline. The so-called baseline corrected spectra,
then, only contain the pure vibrational information showing up as peaks at their specific wavenumbers
νi. In principle, these peaks contain not only information about the presence of the respective molecule
but also information about the absolute concentration. In order to extract this quantitative information,
we developed an algorithm to evaluate the contribution of each specimen to the height of these
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characteristic peaks. The basic assumption for our algorithm is that a superposition principle can
be applied. If this is valid, each specimen can be evaluated separately and the overall sum of all
individual parts represents the measured height.

We expect the contribution of pure water to be constant (ki), whereas the contribution of glucose
(ϕi) or fructose (ψi) depends on the concentrations (c) of the dissolved monosaccharides. ϕi and ψi are
the so-called basis functions which can be, in the most general form, arbitrarily shaped (e.g., polynomial,
exponential, or other). To model the correlation between the level of monosaccharide-concentration
and the resulting height of the peaks at the characteristic wavenumbers we can choose a suitable basis
function for each specimen. This can be written as

∆sg(νi) = ϕ̃i
(
cg
)
− ki = ϕi

(
cg
)

(1)

and
∆s f (νi) = ψ̃i(c f )− ki = ψi(c f ), (2)

resulting in
∆s(νi) = ∆sg(νi) + ∆s f (νi) = ϕi

(
cg
)
+ ψi(c f ), (3)

where ∆s is the height of the peak at the characteristic wavenumber. As we want to determine the
absolute concentrations from our measurements, one has to solve a system of nonlinear equations for

arbitrary basis functions ϕi and ψi. Introducing x =
[
cg c f

]T
and using (3) we obtain

 ϕ1(x1) + ψ1(x2)− ∆sm(ν1)
...

ϕn(x1) + ψn(x2)− ∆sm(νn)


︸ ︷︷ ︸

:=F(x)

= 0, n ≥ 2 (4)

with ∆sm being the measured peak heights and n being the number of characteristic wavenumbers
which shall be evaluated. If n > 2 holds, a least squares solution [38] is pursued given by

x∗ = max
(

argmin
x

F(x)TF(x), 0
)

. (5)

If the calculations should yield negative concentrations, they are automatically set to zero, since
they are from a physical point of view infeasible.

The developed algorithm allows for a precise estimation of the concentrations for glucose and
fructose. Importantly, the results of further measurements can be used as additional feedback to adapt
the basis functions in order to improve the process quality and accuracy on the fly.

3. Results

Three different SEIRA measurement cycles are recorded to test and evaluate the proposed
procedure. The pure glucose and fructose solutions are used to train our model, that is, determine
the basis functions as well as the respective peak contributions to each of the characteristic spectral
signatures as a function of the absolute concentration. Afterwards, we can analyze the mixed solutions
which we assume as the solutions of “unknown” concentration in order to test the accuracy of our
evaluation procedure.

Within each cycle, eleven sets of dilutions are examined. In the glucose cycle concentrations of
10, 25, and 50 g/l glucose are dissolved in water. Before, after, and between each aqueous solution,
the flow cell of the sensor is flushed with pure water. On the one hand, this shall remove all residuals
of the monosaccharide which could spoil subsequent measurements. On the other hand, a reference
measurement for comparison to the aqueous solutions is recorded [28]. The order of execution is
depicted in Figure 3 in panels (a) to (c). Within each of the eleven sets thirty individual spectra are taken.
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This not only allows for checking repeatability but also averaging over these thirty samples to give a
more accurate and smoother representative measurement for further evaluation. A brief statistical
analysis is provided in the Appendix A (Figures A1 and A2). In a second measurement cycle the order
of execution is repeated using fructose instead of glucose. During a last cycle mixed aqueous solutions
containing both specimens with different varying concentrations are examined. All measurement data
and all MATLAB related files for their evaluation are provided in the Supplementary Materials for the
interested reader.Sensors 2019, 19 FOR PEER REVIEW  6 
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Figure 3. Employed measurement cycles with different concentrations of glucose (a), fructose (b), or
both (c). Panels (d) to (f) show the corresponding relative reflectance of each of the eleven SEIRA
measurement sets with the expected fingerprint region for molecular vibrations of glucose and fructose
highlighted in light green or light blue, respectively.

Exemplary SEIRA reflectance spectra for all three sets are shown in the Figure 3 panels (d)
to (f). We can clearly identify vibrational signatures characteristic for glucose at ν = 1034 cm−1

and ν = 1078 cm−1(light green bars), whereas for fructose the vibrational signatures occur around
ν = 1063 cm−1 and ν = 1080 cm−1 (light blue bars). The identified characteristic wavenumbers
are in accordance with the ones reported in literature [39]. These vibrations can be identified as
stretching vibrations of C-C and C-O bonds of the glucose ring or the fructose ring respectively. In case
of the mixed solutions, we clearly observe the vibrational signatures of both molecular specimens.
Examining the spectra closely, it is also obvious that the modulation depth is a function of the
concentration. A higher respective concentration leads to a more pronounced vibrational feature. From
these raw spectra it is also obvious that the mere presence of the molecular species can be easily and
straightforwardly determined whereas the absolute concentration can only be estimated at best. This
shortcoming we want to address next.
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3.1. Pre-Processing the SEIRA Measurement

In order to extract the vibrational features of the present molecular specimen and determine its
concentration we apply a slightly modified version of the ALSS algorithm [37] to the SEIRA data.
The original version requires two weighting factors to be chosen. The first parameter λ determines how
smoothly the reconstructed baseline is shaped. The second parameter p is responsible for the allowed
asymmetry of the line shape. The algorithm is modified such that it allows to exclude parts of the
fitting range within a certain neighborhood of the identified or known characteristic wavenumbers of
the molecular species in the SEIRA measurement as the line is strongly deformed here. We performed
a sensitivity analysis for the ALSS parameters which revealed that the absolute peak values of the
vibration features in the baseline corrected spectra strongly depend on the chosen parameters. We
have made different choices for the parameters λ and p, leading to different baselines. Panel (a) of
Figure 4 shows a SEIRA measurement for a 50 g/l glucose solution and panel (b) a zoom into the
spectral region of interest. The green curves in both panels represent different possible base lines. All
of these baselines could be identified as reasonable but clearly different baselines, as is particularly
obvious from the full reflectance spectrum and baselines depicted in panel (a). Panels (c) and (d)
of Figure 4 display the baseline corrected SEIRA spectrum for the different baselines. The spectral
position of the vibrational features is well retained but the absolute values, which are related to the
actual concentration, are lost. For all the spectra it is possible to determine the presence of glucose but
the concentration cannot be determined. These results clearly show that the choice of the baseline is of
utmost importance and that the baseline must be chosen for all measurements simultaneously and
consistently in order to retain quantitative information. Hence, the parameters are kept constant and
set to λ = 500, p = 0.99, and νexcl. ∈ [1000, 1100] for comparability between all data sets.
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Figure 4. (a) Relative reflectance measured for 50 g/l aqueous glucose together with a set of baselines
for varying parameters λ; (b) Zoom in on the relevant range of wavenumbers at which vibrational
resonances are expected to appear for glucose and fructose; (c,d) Baseline corrected signals and the
influence of λ on the vibrational features.
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Using these baseline correction values, we obtained the pure vibrational spectra. Figure 5 displays
exemplary spectra for all three cases, that is, the pure glucose solutions in panel (a), the pure fructose
solutions in panel (b), and the mixed solutions in panel (c). These spectra clearly exhibit an increasing
modulation depth for increasing concentrations, as expected. The vibrational spectra of the mixed
glucose and fructose solutions are rather complicated to interpret as they contain all the vibrational
modes of glucose and fructose. The characteristic wavenumbers of glucose are determined to be at
1034 cm−1 and 1078 cm−1, whereas we obtain 1063 cm−1 and 1080 cm−1 for fructose. Since the second
characteristic wavenumber of glucose and fructose are spectrally close together, we choose to only
evaluate the peaks at ν = [1034, 1063, 1078]T cm−1 in the following.Sensors 2019, 19 FOR PEER REVIEW  8 
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The next question arising is related to the relative weight of each component in a certain peak,
that is, the question whether or not each peak can be decomposed in its relative composition. Only if
this is possible, the absolute concentrations, particularly in the mixed solutions, can be determined.
For this purpose, we apply the proposed algorithm to the preprocessed data.

3.2. Basis Function Approximation

When evaluating the extracted peaks of pure water measurements we obtain good agreement with
the expected constant values for the glucose and fructose cycle which are depicted in panels (a) to (c) of
Figure 6. The peaks obtained from the mixed cycle measurements deviate more around their average.
A possible explanation could be that not all residues from previously measured aqueous solutions
have been flushed out of the flow cell or are still sticking to the sensor surface. These deviations
behave quite similar for all three examined wavenumbers. However, we also observe variations of
the calculated mean values ki when comparing the different measurement cycles. In particular, this is
visible at 1034 cm−1 in panel (a) and at 1063 cm−1 in panel (b). At this point we are not sure about the
origin of these deviations. In order to include this influence, we decided to design the analysis routine
adapted to the sensor data. This means that for each measurement cycle a calibration is carried out to
identify the constants ki of Equations (1) and (2), characterizing the influence of pure water.

Subsequently, we analyze the SEIRA data for aqueous solutions containing only one
monosaccharide. In a first step, we subtract the influence from pure water following Equations
(1) and (2). Then, we have to choose suitable basis functions which are able to fit the data points
best. Polynomials provided the optimum results. Starting from a simple linear function, the degree
of the polynomials was tested up to an order of three. The polynomial basis functions ϕi and ψi are
parametrized to match the data points best in a least squares sense. An exemplary combination of
fitted basis functions is depicted in Figure 7. The shape differs clearly at each of the three characteristic
wavenumbers. Panel (a) at ν1 = 1034 cm−1 demonstrates the dominant influence of the glucose level
as expected. However, interestingly, the influence of fructose is not negligible. At ν2 = 1063 cm−1 it is
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just the opposite as displayed in panel (b). In the vicinity of ν3 = 1078 cm−1 we expect resonances
for both specimens visualized in panel (c). Overall, the basis functions of glucose and fructose can be
matched quite well with quadratic polynomials.
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Figure 7. Signal peaks ∆s evaluated at the three characteristic wavenumbers ν1 = 1034 cm−1

(a), ν2 = 1063 cm−1. (b), and ν3 = 1078 cm−1 (c) originating from pure glucose or pure fructose,
respectively. The content of pure water is already subtracted using the corresponding average value.
The displayed basis functions ϕi and ψi are quadratic polynomials.

3.3. Validation of Algorithm for Quantitative Concentration Estimate

Having identified suitable basis functions ϕi and ψi, the system of nonlinear Equation (4) can
be solved in a least squares sense. For each of the thirty three measurement sets the concentrations
are calculated using Equation (5) and compared to the expected value. For different combinations of
polynomials as basis functions a comparison of the resulting RMS errors and mean errors are listed
in Table 1. The best results are achieved with ϕi and ψi being quadratic polynomials with regards to
the error mean value. The estimated concentrations are depicted in Figure 8 and exhibit very good
agreement with the set values (Figure 3). Estimation of the concentrations of the glucose and fructose
cycle, shown in panel (a) and (b), are expected to match well, since they have been used as training
data for the algorithm. However, the algorithm also proves to be successful using the validation data
(mixed cycle) depicted in panel (c). Overall, analyzing the concentration estimate for all three cycles
a mean deviation of 0.71 g/l is achieved with the proposed procedure. With regards to the highest
employed concentration of 60 g/l this mean error is below 1.2%.
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Table 1. Comparison of RMS errors, mean errors, and maximum errors for the estimated concentrations
resulting from different combinations of polynomial basis functions ϕi and ψi with order nglucose or
n f ructose respectively.

nglucose nfructose erms [g/l] emean [g/l] emax [g/l]

1 1 1.27 0.81 3.86
1 2 1.27 0.77 3.98
1 3 1.89 0.95 10.02
2 1 1.20 0.73 4.13
2 2 1.23 0.71 4.29
2 3 1.67 0.88 8.36
3 1 1.51 0.80 8.03
3 2 1.53 0.79 8.24
3 3 1.69 0.90 6.50Sensors 2019, 19 FOR PEER REVIEW  10 
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Figure 8. Estimated levels of concentration for the glucose cycle (a), fructose cycle (b), and mixed cycle
(c) using cycle-specific constants ki, quadratic polynomials ϕi and linear basis functions ψi.

4. Discussion

The results demonstrate that a concentration of monosaccharides such as glucose and fructose
can be reliably and quantitatively sensed down to at least 10 g/l. The method not only works for
aqueous solutions with pure glucose or pure fructose but also for mixed solutions containing both
specimens. The non-invasive sensor principle relies on surface enhanced infrared absorption (SEIRA)
spectroscopy of glucose and fructose in the mid-infrared spectral range. After preprocessing the SEIRA
data with a baseline correction method, a new and adaptive algorithm is employed to reconstruct the
concentration levels of glucose and fructose within aqueous solutions. Being able to choose arbitrarily
shaped basis functions for any number of characteristic wavenumbers renders this algorithm highly
flexible. The extension to incorporate additional monosaccharides is straightforward. Moreover,
the structure of the algorithm facilitates its application to machine learning. Adapting or learning
the basis functions and their parametrization could be achieved in an “online fashion”. This could
be especially interesting for a sensor which senses glucose concentrations in the human ocular fluid
or interstitial fluid that can be directly correlated to the blood glucose concentrations [7]. However,
the measurement setup has to be improved in order to increase the sensitivity further to achieve
sensitivity below 10 g/l, eventually down to physiological concentrations of mg/l.

In order to explore the limitations of the proposed methods regarding robustness and generality
further experiments are required. Other monosaccharides, as well as maltose as a biologically relevant
double sugar, should be added as analytes, not only to identify their fingerprint resonances but also to
validate whether the method is robust enough to accurately predict the concentrations of glucose and
fructose even in more complex environments. Furthermore, measurements with aqueous solutions
containing glucose or fructose with concentrations below 10 g/l have to be taken in future research.
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Appendix A

A brief statistical analysis is done to proof the repeatability of the measurements. Within each
measurement set thirty individual spectra are taken. For an exemplary set, namely the one with
50 g/l glucose and 50 g/l fructose dissolved in water, the individual spectra are depicted in panel
(a) of Figure A1. Within the interested fingerprint region all spectra exhibit a very similar qualitative
behavior (panel (b)). For the shown set, which is a worst case example, only one spectrum differs
significantly from the others. Since we normalize the reflectance spectra with the baseline correction
method afterwards in our data analysis procedure this offset becomes negligible anyways. Within
the fingerprint region around 1000 to 1100 cm−1 the mean value of the variance (panel (d)) and the
standard deviation (panel (f)) are below 10−5 and 4 × 10−3 respectively. Only for wavenumbers below
1000 cm−1 or above 6000 cm−1 the variance and standard deviation increase which is shown in panels
(c) and (e). These inaccuracies in the border regions can be explained with the sensor design. It is
tuned to provide best measurement results for the fingerprint region.

Repeating this statistical analysis for all measurement sets provides a base to judge the quality
of the measurements. The results are depicted in Figure A2. In panels (a) to (c) the concentrations of
glucose and fructose are visualized. The calculated mean values of the variances and the standard
deviations within the fingerprint region are illustrated in panels (d) to (f) and panels (g) to (i)
respectively. Only the first water measurement of the glucose and fructose cycle exhibit a slightly
higher variance compared to the other sets of the corresponding cycle. Measurement sets six and
eleven of the mixed cycle display the highest variance. For both sets, an individual spectrum had an
almost constant offset in the reflectance as visualized in panel (b) of Figure A1. However, this offset
becomes negligible due to the averaging over the thirty spectra and due to the normalization through
the baseline correction method.

1 

Figure A1. Cont.
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1 

Figure A1. Statistical analysis of exemplary measurement data. The shown reflectance (a,b) results
from a mixed solution with 50 g/l glucose and 50 g/l fructose. The measurement data consist of thirty
individual spectra. The variance and the standard deviation between those spectra are calculated for
each wavenumber and depicted in panels (c,d) and (e,f) respectively. The chosen measurement set
reveals one of the largest variances because the reflectance of one spectra exhibits an almost constant
offset. However, the qualitative features are preserved.
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Figure A2. Statistical analysis of the measurement sets for each of the three cycles. The glucose/fructose
concentration for each set is depicted in panels (a–c). The corresponding mean value of the variance
within the fingerprint region ranging from 1000–1100 cm−1 (compare to panel (d) of Figure A1) is
visualized in panels (d–f). The corresponding mean value of the standard deviation is depicted in
panels (g–i).
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