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ABSTRACT: Monosaccharides, which include the simple
sugars such as glucose and fructose, are among the most
important carbohydrates in the human diet. Certain chronic
diseases, e.g., diabetes mellitus, are associated with anomalous
glucose blood levels. Detecting and measuring the levels of
monosaccharides in vivo or in aqueous solutions is thus of the
utmost importance in life science, health, and point-of-care
applications. Noninvasive sensing would avoid problems such
as pain and potential infection hazards. Here, with the help of
surface enhanced infrared absorption (SEIRA) spectroscopy,
we demonstrate the reliable optical detection in the mid-
infrared spectral range of pure glucose and fructose solutions
as well as mixtures of both in aqueous solution. We utilize a reflection flow cell geometry with physiologically relevant
concentrations as small as 10 g/L. As significant improvement over the standard baseline correction employed in SEIRA
applications, we utilize principal component analysis (PCA) as machine learning algorithm, which is ideally suited for the
extraction of vibrational data. We anticipate our results as important step in biosensing applications that will stimulate efforts to
further improve the employed SEIRA substrates, the noise level of the spectroscopic light source, as well as the flow cell
environment en route to significantly higher sensitivities and quantitative analysis, even in tear drops.

KEYWORDS: glucose, fructose, glucose sensor, biosensing, surface-enhanced infrared absorption, principal component analysis,
optical and noninvasive sensing

Plasmonic sensors open up new routes in noninvasive
optical sensing applications, such as gas sensing,1,2

biomedical sensing,3,4 and homeland security.5 These sensors
make use of the localized surface plasmon resonance (LSPR)
in metallic nanoparticles6,7 which is a collective oscillation of
the quasi-free conduction electrons within the metal nano-
particle. The resonance position is mainly affected by
geometrical parameters and, most importantly, by the
surrounding refractive index.8 Thereby, changes in the
refractive index of the environment can be detected and
attributed to the presence of a specimen.9 As a logical
consequence, the approach suffers from poor selectivity since
substances with similar refractive indices cannot be differ-
entiated using this method. Therefore, efforts have been made
to combine the high sensitivity of refractive index sensing with
the highly molecule-specific approach, such as infrared
spectroscopy.10

In contrast to refractive index sensing, infrared spectroscopy
(IR) enables material-specific identification of chemical species

making use of their characteristic molecular vibrations in the
mid-infrared (MIR) region.11,12 However, the sensitivity of this
approach is low, requiring large amounts of analyte due to the
small molecular absorption cross sections. To overcome this
sensitivity limitation, surface-enhanced infrared absorption
(SEIRA) spectroscopy13−19 is employed. Here, resonantly
tuned metallic nanoantennas excited by an incoming light field
transfer far-field energy into local nanoscale volumes, leading
to highly enhanced local electromagnetic near-fields, the so-
called hot spots.20 Molecules located inside these hot spots will
interact with the plasmonic nanoantenna via these local
electromagnetic near-fields. Consequently, the molecular
vibrations will manifest themselves in the far-field response
of the nanoantenna as vibrational features on-top of the
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plasmonic line shape. It has been shown that the enhancement
factor of the vibrational features can be as large as 5−6 orders
of magnitude.14,21 This technique is consequently able to
provide the required sensitivity and selectivity for the optical
detection of biomolecular species, such as, e.g., glucose or
fructose.
Glucose is an essential substance in the human metabolism.

Consequently, anomalous glucose levels in the blood can
indicate the emergence and existence of the chronic and
incurable disease diabetes mellitus.22,23 In fact, diabetes mellitus
is caused by a severe malfunction of glucose regulation due to
insufficient insulin supply24 affecting an ever increasing
number of patients worldwide.25 As a result, sizable medical
research is dedicated to glucose detection, measurement, and
sensing,26−28 as well as glucose regulation in the human
blood,29,30 which is said to be the key to most suitably treat the
disease. Thus, a sensor which allows for a reliable and frequent
observation of glucose levels is highly desirable. So far, existing
glucose sensors either rely on an invasive detection principle31

or are still in the state of development32 or appear somewhat
cumbersome.33

In this Letter, we present an optical approach for noninvasive
glucose sensing based on the specificity and sensitivity of
SEIRA spectroscopy. Our ansatz allows sensing of glucose
concentrations in the human ocular fluid or interstitial fluid
that can be directly correlated to the blood glucose
concentrations.34 Moreover, we introduce a mathematical
algorithm known as principal component analysis (PCA)35 for
state-of-the-art data analysis. Apart from its intrinsic stability
against dynamic changes in the sensor environment, the
algorithm is independent of input parameters and thus
completely objective and fully autonomous. We believe that
the combination of SEIRA and PCA is uniquely suited for a
new noninvasive sensor principle.
Our experimental scheme for reliable optical detection of

different concentrations of aqueous glucose and fructose
solutions is depicted in Figure 1. We utilize a reflection flow
cell in inverse geometry which is flushed via attached tube
connectors that transport the desired solutions into and out of
the flow cell. The key parts of our sensor are the different linear
gold antenna arrays which were fabricated with electron beam
lithography (EBL) on top of IR transparent calcium fluoride
substrates (see top right panel of Figure 1). The geometrical
parameters of the nanoantennas, such as the length L, height h,
and width w, are chosen such as to exhibit a plasmon
resonance at the spectral position of the targeted molecular
vibrations of glucose and fructose. Following this approach, the
gold antenna length is 3500 nm with a width and thickness of
100 nm, with a 2 nm chromium adhesion layer underneath.
The periodicity is 4500 nm in x direction and 3000 nm in y
direction. Hence, the local near-field strength and thus the
coupling to the molecular vibrations is further increased by
adjusting the transversal spacing between the nanoantennas
such that the plasmon resonance spectrally coincides with the
Rayleigh anomaly.36,37 To optically probe the sensor, a
commercial FTIR spectrometer (Bruker VERTEX 80) coupled
to an optical microscope (Bruker Hyperion 2000, Schwarzs-
child objective with 15-fold magnification, NA = 0.4) is
utilized. As indicated in the setup sketch, the IR radiation
(globar) impinges from the back side of the sensor where it is
focused onto the gold nanoantenna array. Here, the incoming
IR light field excites the plasmonic modes in the nanoantenna
array. The local electric near-field mediates the coupling of the

plasmonic resonance with the vibrational modes of the
molecules. Thus, the nanoantennas are reporting this enhanced
vibrational fingerprint to the far-field present as narrowband
Fano resonance signature encoded in the antenna scattering
spectrum.38 The spectra are measured with a nitrogen-cooled
mercury cadmium telluride (MCT) detector and referenced to
a gold mirror.
As a first important step, we study the response of our sensor

to pure glucose and fructose solutions, shown in Figure 2a and
b, respectively. For both solutions the concentration is 50 g/L.
The acquired SEIRA reflectance spectra show the broad
spectral signature of the plasmonic resonance. On top of this
resonant feature, we can clearly identify vibrational signatures,
which coincide with the known vibrational bands of glucose
and fructose, as indicated by the red and blue bars. The
acquired spectra are composed of both the plasmon resonance
and the enhanced vibrational signals, which can be seen even
better in the insets in panels (a) and (b). These signals exhibit
a Fano line shape due to the molecular-plasmonic coupling.
However, the Fano line shape is quite symmetric, rather
Lorentzian, which is caused by the almost perfect coupling
between the plasmonic and the vibrational mode due to the
energetic degeneracy ωvib ≈ ωplas.
To decouple the two contributions and to extract the

vibrational signal, a standard baseline-correction routine is
employed.39,40 The idea behind baseline-correction is to
reconstruct the unperturbed plasmon resonance signature
and thus be able to remove it from the spectra. The
corresponding baselines for the glucose and fructose measure-
ments are indicated as black dashed lines overlaid with the
measured data in Figure 2a and b. By dividing the SEIRA

Figure 1. Measurement principle and sensor design. Arrays of linear
gold nanoantennas (top left panel) are fabricated with electron beam
lithography on top of an IR transparent CaF2 wafer. Mixtures of
aqueous glucose and fructose solutions (molecules indicated as red
and blue spheres) are flushed into the flow cell via tube connectors.
Our sensor is probed by a commercial FTIR setup coupled to an
optical microscope which focuses an IR beam impinging from the
backside. The reflected SEIRA signal is referenced to a gold mirror.
The spectra, here schematically illustrated in the top right panel, allow
for the noninvasive discrimination of glucose and fructose due to their
characteristic vibrational bands in the mid-infrared.
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spectrum by the reconstructed baseline, the spectra can be
decomposed, and the purely enhanced vibrational spectra as
depicted in Figure 2c are obtained. For comparison, a shifted
baseline-corrected spectrum of a pure water environment is
depicted in addition to the c = 50 g/L aqueous glucose and
fructose environment within the flow cell. Apparently, water
shows no vibrational peaks in the spectral region of interest,
this excludes the possibility that a vibrational peak of the
solutions originates from the water itself.
By comparing the baseline-corrected spectra of the two

monosaccharides, it is straightforward to differentiate them
solely by their SEIRA spectrum. Apart from the overlapping
vibrational bands of fructose and glucose around 1080 cm−1, a
characteristic glucose vibration appears at 1034 cm−1 and
analogous for fructose at 1062 cm−1. In the following, these
characteristic fingerprint vibrations are used to sense and
discriminate glucose from fructose.

As a demonstration of our sensor principle, cycles of pure
aqueous glucose and pure aqueous fructose solutions of
varying concentration have been measured and are shown in
the Supporting Information (SI) Figures S1 and S2. The
measurements demonstrate the reliable detection of glucose
and fructose down to a concentration of c = 10 g/L = 55 mM,
which is close to the glucose concentrations for diabetes
patients in the range from 2 to 40 mM in the human blood and
from 2 to 22 mM in the interstitial fluid.34 The measurements
also show that the concentration limit can be further decreased
by appropriate sensor design and data analysis. We are utilizing
rod nanoantennas as the basic plasmonic building block.
However, more complex geometries might further increase the
local near-field enhancement or the volume of the enhanced
field strength and thus the number of molecules sensed.
Most sensors are highly prone to crosstalk of other chemical

species besides the ones of interest. This is particularly true for
purely refractive index shift-based sensors such as unfunction-
alized plasmonic nanoantennas.9 Our sensor concept, however,
can distinguish chemically very similar compounds by their
vibrational fingerprints, as evidenced by the measurement in
Figure 2 for the highly relevant case of glucose and fructose. As
further proof of the superior sensor performance we now
analyze mixed aqueous solutions of glucose and fructose of
varying concentrations and mixing ratios, shown in Figure 3.
All spectra are obtained from the identical nanoantenna array.
The solutions are flushed through the flow cell, alternating
with pure water purging solutions.
For a systematical study, we perform a measurement cycle

and flush the flow cell with the corresponding mixture for each
step. In between two different concentrations, the cell is
flushed with pure water to remove precipitated residues of the
solute or dirt. The measurement routine is depicted in the
upper part of Figure 3, giving the respective concentration of

Figure 2. SEIRA spectra of aqueous glucose and fructose solutions.
(a) SEIRA reflectance spectra of a c = 50 g/L aqueous glucose
solution acquired in parallel polarization. (b) Same for fructose. The
molecular vibrations are highlighted by the bars. The baseline as
obtained from the baseline-correction procedure is overlaid with the
measured data as black dashed line (see also inset). (c) Baseline-
corrected vibrational spectra of pure aqueous water environment in
the flow cell (black line) and a c = 50 g/L aqueous fructose solution
(blue line) as well as a c = 50 g/L aqueous glucose solution (red line).
The two monosaccharides are clearly distinguishable by their SEIRA
spectrum.

Figure 3. Baseline-corrected (BC) vibrational spectra of mixed
aqueous fructose and glucose solutions. The top panel illustrates the
measurement cycle with mixed aqueous glucose and fructose
solutions. Here, the blue bars indicate the fructose concentrations
(g/l) and the red bars the glucose concentrations (g/l). For the
stacked bars, the total sugar concentrations add up. The bottom panel
shows the corresponding baseline-corrected vibrational reflectance
spectra for each measurement step of the cycle with the respective
concentrations given on top of the figure. It is rather difficult to derive
quantitative results from the baseline-corrected spectra.
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glucose by the red and fructose by the blue bars. Starting from
a pure aqueous glucose solution and followed by a pure
aqueous fructose solution of 50 g/L each, an equal mixture of
aqueous glucose and fructose (50 g/L and 50 g/L) is flushed
into the flow cell. Afterward, the cycle is completed by a (60 to
30 g/L) and a (30 to 60 g/L) aqueous (glucose to fructose)
mixture. For each measurement step, SEIRA spectra are taken
in reflection and referenced to a gold mirror. Performing a
baseline correction routine, we extract the enhanced vibra-
tional signal for each measurement, shown in the lower panel
of Figure 3. As a guide to the eye, the molecular vibrations of
glucose are highlighted with red bars and those of fructose with
blue bars.
The pure glucose (red curve) and fructose (blue curve)

measurements show each only the vibrational modes of the
corresponding analyte, as expected. For the mixed solutions
one can identify the vibrational modes of glucose and fructose.
Also, the measurements for pure water show no vibrational
signatures, demonstrating that the analytes are not precipitat-
ing or sticking to the sensor chip. Inspecting the spectra
closely, the different pure solutions and also the different
mixtures can be clearly distinguished.
However, from these measurements it is indicated that the

baseline corrected spectra are not ideally suited for an
automated and input parameter free evaluation in order to
extract quantitative information about the respective concen-
tration. In fact, this is caused by a number of issues. For each
measurement cycle, the input parameters for the baseline-
correction algorithm need to be adjusted in order to describe
the unperturbed plasmon resonance correctly. This results in
limited reproducibility when considering two different
measurement cycles. In fact, this issue becomes visible when
comparing the vibrational signals of the pure c = 50 g/L
glucose and fructose solutions from the measurement cycle
shown in Figure 3 with the measurements shown in Figure 2c.
A difference of more than 0.5% of the vibrational signals is
present, originating from different baseline-correction param-
eters. This issue is minor in case a substance is just supposed to
be detected or identified. However, for a quantitative
measurement, that is, for the determination of a concentration,
it is critical to retrieve the exact values. Additionally, potential
misinterpretations might arise when examining the baseline-
corrected spectra for the mixed solutions, shown as black
(30:60 g/L), yellow (60:30 g/L), and green (50:50 g/L) curve
in the bottom panel of Figure 3. For example, the vibrational
signal of the equal (50:50 g/L) mixture of glucose and fructose
(green curve) exhibits a different vibrational signal at the
fructose band at 1062 cm−1 compared to the pure aqueous
fructose solution of similar concentration. Although the
fructose concentrations are equal, the vibrational signals
seemingly deviate from one another. However, as the
vibrational signals of the pure glucose solution and the
(50:50 g/L) mixture match, we ascribe this issue to an error in
the baseline-correction procedure. These observations clearly
underline that an evaluation method is required which is free
of input parameters in order to allow for quantitative
measurements.
Evaluating sensor data, in particular sequences of different

measurement as in our case, relies on the identification of
common patterns. The presence of, e.g., glucose in the
solution, is associated with the presence of the corresponding
vibrational fingerprints as well as a resonance shift due to a
different effective refractive index. So far, we have identified

these patterns manually by inspection of the baseline-corrected
spectra. As we have seen, this becomes very difficult as soon as
several vibrational bands are present which might even be of
small modulation due to small concentrations.
The field of machine learning and data mining has become

highly important over the past years due to ever increasing
amount of data and the necessity to analyze and identify the
content. In fact, significant efforts are invested in identifying
patterns and similarities in these data sets.
Mathematically speaking, these problems are all very similar

and are basically an eigenvector−eigenvalue problem. If
common patterns are present within all data sets, represented
as vector quantities, the overall data set can be represented as a
linear combination of a limited set of eigenvectors. In our case,
this is intuitively clear: All measurements of solutions
containing, e.g., glucose will exhibit the vibrational bands of
glucose (determined by an eigenvector) of varying intensity
(determined by an eigenvalue). This evaluation method is
called principal component analysis (PCA) and has become a
standard tool in data analysis and data mining.
In detail, PCA decomposes the measured data and

represents them in an orthogonal and uncorrelated set of
eigenfunctions called principal components (PCs) and
eigenvalues which are termed scores (SCs). Each term of the
linear expansion is composed of the product of the PC as an
eigenvector and a spectrum-specific score SC. Together with
the average A of all measured spectra (in our case 300 spectra
in total, 30 spectra for each of the ten measurement steps),
each measured spectrum which is a 1D vector composed of
3502 channels can be described as follows

Aspectrum SC PCi
j

i j j
1

300

,∑= + ·
=

The utilized algorithm determines the PCs such that the first
one contributes the highest variance and thus constitutes the
largest contribution. Analogously, the second order PC makes
the second largest contribution and so forth. The correlation
between individual data sets is more significant when fewer
PCs are needed in order to describe the entire data set.
The first two PCs of our data set are displayed in Figure 4a.

It is important to note that the PCs, as calculated by the
algorithm, have no a priori physical interpretation. As they are
supposed to capture the common patterns in the measurement
and thus the physical processes, they are, however, expected to
relate to a physical interpretation. Importantly, at this point it
is not necessary to assign such a physical interpretation as the
algorithm does not require any starting input at all. Figure 4b
depicts the first and second order scores for all 300
measurements, color coded for each of the 30 measurements
per fructose/glucose solution cycle. The data forms clear and
very distinct clusters. The different solutions can be clearly
separated and identified in the 2D space of the first and second
order scores. In strong contrast to the impression left by the
baseline corrected vibrational spectra shown in Figure 3b, the
relative and absolute concentrations are well encoded into the
first and second order scores. The clusters are well separated,
which should also allow for the identification of intermediate
concentration ratios as well as significantly smaller overall
concentrations. For smaller concentrations, the data points are
expected to shift closer to the pure water measurements on the
right-hand side until they merge and become indistinguishable.
However, it is obvious that there seems to be significant room
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for the detection of smaller concentrations. For very small
concentrations the vibrational fingerprints which are imprinted
onto the spectra seem to vanish into the measurement noise.
However, we believe, as underpinned by the PCA analysis
shown in Figure 4b, that these features can in fact still be
retrieved from the data by the PCA algorithm.
As mentioned before, the PCA evaluation of the measure-

ments does not require any input parameters or any knowledge
about the physical processes involved. Nevertheless, Figure 4b
conclusively demonstrates the ability of the PCA algorithm to
extract the different concentrations of the solutions, which is a
crucial ingredient for an automated evaluation routine.
However, indeed a physical interpretation can be assigned to
the PCs in our case: The first PC takes the form of a resonance
peak roughly coinciding with the plasmonic resonance of our
antenna array. By adding (positive score value) or subtracting
(negative score value) this feature from the average spectrum,
the spectrum is blue-shifted or red-shifted, respectively. The
first PC therefore captures the plasmonic resonance shift due
to the different effective refractive indices of the solutions. In
the case of the pure water solutions with the smallest effective
refractive index, the plasmon resonance is furthest blue-shifted.
For the solution with the largest overall glucose/fructose
content of 100 g/L, the resonance is furthest red-shifted. The
x-axis of our diagram is thus displaying the response of a pure
refractive index sensor. It is clear that the first PC is not able to
distinguish between solutions with the same/similar overall
concentrations, as fructose and glucose yield the same
refractive index shift at identical concentrations. Inspecting
Figure 4a, we find that the second PC contains the vibrational
information. As can be seen by the glucose and fructose

vibrational bands highlighted in the Figure 4a, all four
vibrational signatures are encoded in the second PC. This
fact can also be seen in Figure 4b: The corresponding second
order score plotted on the y-axis lifts the degeneracy of the first
PC and allows for the discrimination of glucose from fructose.
The vibrational bands of glucose and fructose have opposite
signs, and thus the sign of the score values (and also their
magnitude) encodes the molecular specificity. The feature is
somewhat more complicated when compared to the refractive
index shift encoded in the first PC as glucose and fructose have
vibrational bands spectrally close at 1078 and 1080 cm−1,
respectively, which are superimposed into one feature. In order
to further demonstrate the power of PCA, we have also
evaluated the concentration dependent measurements of the
pure aqueous solutions. The results are presented in Figures S3
and S4 in the Supporting Information.
In conclusion, we have demonstrated a noninvasive sensor

principle which relies on the sensitivity and specificity provided
by SEIRA. Within our work, we were able to achieve a
sensitivity down to c = 10 g/L for pure aqueous fructose and
glucose solutions which can easily be enhanced by utilizing a
more sensitive sensing geometry, such as split-ring resonators
or a more powerful light source, e.g., a quantum cascade laser
as already demonstrated in previous works.41−43 In addition,
we demonstrated that the PCA algorithm is ideally suited for
the evaluation of the sensor data to retrieve absolute glucose
and fructose concentrations even within mixed solutions. We
believe that the combination of SEIRA and PCA approach
might lay the foundations for future noninvasive optical
sensing that combines refractive index sensing and vibrational
information down to extremely small physiological concen-
trations, as found, for example, in tear drops.
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Figure 4. PCA analysis of mixed aqueous glucose and fructose
solutions. (a) First and second principal component as obtained from
PCA of our measurement cycle. The first component represents the
spectral shift of the plasmonic resonance due to different effective
refractive indices, whereas the second component comprises the
vibrational information as also highlighted by the color-coded bars.
(b) Plotting the corresponding second order score vs first order score
for each measurement reveals clusters for each measurement step.
The characteristic positions as obtained from the input parameter
independent algorithm can be addressed to specific concentrations by
calibrations measurements.
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