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Abstract
The Faraday effect describes the phenomenon that a magnetized material can alter the 
polarization state of transmitted light. Interestingly, unlike most light-matter interactions in 
nature, it breaks Lorentz reciprocity. This exceptional behavior is utilized for applications such 
as optical isolators, which are core elements in communication and laser systems. While there 
is high demand for sub-micron nonreciprocal photonic devices, the realization of such systems 
is extremely challenging as conventional magneto-optic materials only provide weak magneto-
optic response within small volumes.

Plasmonics could be a key to overcome this hurdle in the future: over the last years there 
have been several lines of work demonstrating that different types of metallic nanostrutures 
can be utilized to greatly enhance the magneto-optic response of conventional materials. 
In this review we give an overview over the state of the art in the field and highlight recent 
developments on hybrid plasmonic Faraday rotators. Our discussions are mainly focused on 
the visible and near-infrared wavelength regions and cover both experimental realizations as 
well as analytical descriptions. Special attention will be paid to recent developments on hybrid 
plasmonic thin film systems consisting of gold and europium chalcogenides.
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1. Introduction

The presence of a static magnetic field influences the optical 
properties of certain materials that are referred to as magneto-
optic (MO) materials. This gives rise to several MO effects, 
such as the Faraday effect [1, 2] in transmission and the MO 
Kerr effect in reflection [3]. Here, the Faraday effect is of 
special interest as it is the potentially strongest MO effect. It 
describes the following phenomenon: when linearly polarized 
light propagates through a MO material, in the direction of an 
applied static magnetic field B the polarization plane of the 
electromagnetic wave is rotated by the angle

θ = VBz, (1)

where z is the thickness of the material and V  is the material 
specific Verdet constant. A very intriguing and unique prop-
erty of the Faraday effect is that time-reversal symmetry and 
Lorentz reciprocity are broken [4, 5]. As a result, the direction 
of the polarization rotation is determined by the direction of 
the applied magnetic field and not by the direction of the wave 
vector of the incident light. This fact fundamentally distin-
guishes it from effects such as optical activity [6]. MO effects 
are actually the only practical way to break Lorentz reciproc-
ity in passive optical systems, since other approaches rely on 
either nonlinear effects [7] or time modulation [8]. For that 
reason, Faraday rotators are widely utilized as core elements 
in nonreciprocal optical devices such as optical isolators  
[9–11], which require a Faraday rotation of 45◦. As such, 
Faraday rotators are essential components in a multitude 

of optical systems, including optical telecommunication  
networks [12–15] and laser systems [16–18].

Most systems that involve Faraday rotators have recently 
undergone massive miniaturization. Hence, there is a high 
demand for down-sized Faraday rotators [19, 20]. Especially 
in laser systems, optical isolators are often the limiting comp-
onents when it comes to device miniaturization [19]. However, 
the miniaturization of optical isolators is extremely challeng-
ing, since, according to equation (1), a minimum optical path 
length must be acquired to reach the required 45◦ Faraday 
rotation. A promising approach to overcome this problem 
is to combine MO materials with plasmonic nanostructures. 
Over the last years there have been several lines of work dem-
onstrating that plasmonic nanostructures can be utilized to 
enhance the magneto-optic response of conventional mat erials 
significantly.

The first approaches to enhance Faraday rotation were 
based on MO nanoparticles [21], photonic crystals [22–26], 
and microcavities [27–29] but were hampered by either weak 
MO effects or relatively large structure sizes that are also dif-
ficult to fabricate. There have also been efforts to enhance the 
rather weak MO Kerr effect by means of ferromagnetic metal-
lic nanoparticles [30–33], photonic crystals [34] and subwave-
length dielectric MO gratings [35]. Considerable attention 
was received by the work by Chin et al in 2013, where the 
Faraday rotation of a dielectric bismuth-iron-garnet (BIG) thin 
film is enhanced by attaching a metal grating [36], resulting 
in Faraday rotation of about 0.8◦ for a 215 nm thick structure. 
Here, the strong Faraday rotation originates from the interac-
tion between waveguide resonances in the BIG thin film and 
localized surface plasmon resonances (LSPRs) in the metal 
grating [37–39]. At that time, this performance was already 
a remarkable achievement considering that conventional 
Faraday rotators require centimeter sized crystals to achieve 
45◦ rotation. However, in the following years there has been a 
series of works resulting in even thinner Faraday rotators with 
one order of magnitude larger rotation and more functionality 
[40–42]. As the performance of these nanoscopic structures is 
not far away from meeting the requirements of a Faraday iso-
lator, the concept of hybrid magnetoplasmonic crystals could 
become a key ingredient to realize nonreciprocal photonic 
devices in a highly integrated environment.

In this review we focus on recent developments on magneto-
plasmonic crystal Faraday rotators and put them into the context 
of nonreciprocal plasmonics and other magneto-optic nanostruc-
tures. Our discussion will cover both experimental realizations as 
well as analytical descriptions. We start with a theoretical primer 
in section  2, where we introduce the basic physical concepts 
involved in hybrid magnetoplasmonic systems. This includes 
magneto-optic effects, plasmonics, and the optical properties of 
corrugated waveguides. After that, in section 3 we give an over-
view over the most relevant works in the field of nonreciprocal 
nanophotonics and magnetoplasmonics. In the sections 4–6 we 
pay special attention to the most recent experimental and theor-
etical advances within the realm of hybrid magnetoplasmonics 
for giant Faraday rotation. Major parts of this review have been 
adapted with permission from the PhD thesis by Dominik Floess 
[43] and from the articles [40–42].
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2. Fundamentals

This section provides a basic discussion of the physical phe-
nomena such as magneto-optic effects, plasmonics, and the 
modal dispersion of grating-waveguide structures. The con-
cepts introduced here will be basis for the discussions in the 
following sections. This section has been adapted with per-
mission form [43].

2.1. Polarization of light

First, the mathematical foundation and nomenclature for 
describing the polarization state of classical electromagnetic 
waves is introduced. The relations compiled in this section are 
the basis for the discussions throughout this review. The deri-
vations and naming conventions in this section  are adapted 
from Zvezdin and Kotov [44].

A plane electromagnetic wave propagating in z-direction 
can be written in the form

E(z, t) =
[

a cos(kz − ωt)
b cos(kz − ωt + δ)

]
, (2)

where ω is the angular frequency and k the wave number [44]. 
As an alternative formulation to (2) it is often more convenient 
to use a notation which is based on the assumption that the 
actual physical electric field is given by the real part of the 
complex electric field

E(z, t) = Ẽei(kz−ωt) (3)

with

Ẽ =

[
Ex

Ey

]
=

[
a

beiδ

]
. (4)

As in the definition of the real electric field (2), the amplitudes 
a and b, as well as the phase angle δ are assumed to be real. It 
is immediately clear that the real part of E(z, t) in (3) is equal 
to E(z, t) in (2).

The electromagnetic wave described by the general expres-
sions (3) and (4) can be interpreted as the superposition of 
two waves, where one is oscillating only in x direction and 
the other in y direction. However, depending on the phase δ 
between the two partial waves, the resulting field vector (3) 
performs an elliptical motion. This is illustrated by figure 1. 
It shows a parametric plot of the real part of the electric field, 
where the varied parameter is the propagator term ωt − kz. 
The resulting shape is an ellipse, which is fully characterized 
by the two angles θ and ψ. While θ determines the tilt of the 
polarization ellipse with respect to the x-axis, the angle ψ 
describes the degree of ellipticity. If ψ = 0, the wave is lin-
early polarized, whereas for |ψ| = π the wave is circularly 
polarized. Furthermore, the handedness of the circular polari-
zation can be expressed via the sign of ψ, i.e. ψ = +(−)π  
corresponds to right(left)-handed circular polarization. The 
two angles are related to the coefficients in (2) in the follow-
ing way [44]:

tan(2θ) =
2 Re(χ)
1 − |χ|2 (5a)

tan(2ψ) =
2 Im(χ)

1 − |χ|2 (5b)

with

χ ≡
Ey

Ex
=

beiδ

a
. (6)

For the important case of |χ| � 1 the equations (5) become

θ ≈ Re(χ) (7a)

ψ ≈ Im(χ). (7b)

While θ and ψ fully determine the polarization state of a 
plane wave they are not directly accessible in experiment. The 
reason is that the electric and magnetic fields of a light wave 
usually cannot be measured directly and have to be derived 
from time-averaged intensity measurements. For that reason, 
the Stokes formalism is an important alternative description of 
polarization states as it is only based on time-averaged inten-
sities. In this formalism the polarization state of light can be 
expressed by means of the four Stokes parameters [44, 45]

S0 = Ix + Iy (8a)

S1 = Ix − Iy (8b)

S2 = I+45◦ + I−45◦ (8c)

S3 = IR + IL. (8d)

The quantities Ix and Iy correspond to the time averaged 
intensity of the x- and y-polarized components of the light. 
Furthermore, I+45◦ and I−45◦ denote the time averaged inten-
sity measured after the light passes a perfect polarizer tilted 
by +45◦ and −45◦, respectively. Similarly, IR and IL are the 
time-averaged intensities of the right-handed and left-handed 
components of the plane wave. The time-averaged descrip-
tion of the Stokes formalism also allows to take the degree of 
polarization

Figure 1. Polarization ellipse of a plane electromagnetic wave with 
a tilting angle θ and ellipticity angle ψ.

Rep. Prog. Phys. 81 (2018) 116401



Review

4

Π =

√
S2

1 + S2
2 + S2

3

S0
(0 � Π � 1) (9)

into account. Since every plane wave of the form (2) has a well 
defined polarization state, the degree of polarization is Π = 1. 
On the other hand, in the case of unpolarized light, the mea-
surement of the Stokes parameters would lead to Π = 0. This 
is the typical situation for incoherent light emitted by thermal 
light sources with rapidly and randomly changing field ampl-
itude vectors. If the degree of polarization is in between the 
two extremes, the light is partially polarized.

In the case of Π = 1, the Stokes parameters can be related 
to the quantities in equation (2) in the following way:

S0 = a2 + b2 =
√

S2
1 + S2

2 + S2
3 (10a)

S1 = a2 − b2 = S0 cos(2ψ) cos(2θ) (10b)

S2 = 2ab cos δ = S0 cos(2ψ) sin(2θ) (10c)

S3 = 2ab sin δ = S0 sin(2ψ). (10d)

Dividing equation (10c) by (10b) and equation (10d) by (10a) 
yields the angles

θ =
1
2
arctan

(
S2

S1

)
 (11a)

ψ =
1
2
arcsin

(
S3

S0

)
. (11b)

In the case of a complex electric field, the Stokes parameters 
can be derived using

S0 = ExE∗
x + EyE∗

y (12a)

S1 = ExE∗
x − EyE∗

y (12b)

S2 = ExE∗
y + E∗

x Ey (12c)

S3 = i(ExE∗
y − E∗

x Ey). (12d)

2.2. Light propagation in magneto-optic materials

The characteristic property of magneto-optic (MO) materials 
is that their associated permittivity tensor possesses magnetic 
field induced off-diagonal elements which are antisymmetric. 
In this section it will be elaborated on how this characteristic 
structure of the permittivity tensor influences the propagation 
of light inside magneto-optic materials. The most important 
outcome of this section is that the Faraday effect is directly 
proportional to the off-diagonal elements in the permittivity 
tensor.

A key element of the following discussions is the 
Helmholtz wave equation, which describes the evolution of an 
electromagnetic wave inside a medium with a given permit-
tivity tensor. At first, this relation is derived from the mac-
roscopic Maxwell equations  in matter and then applied to 

both anisotropic and isotropic MO materials. The derivations 
in this section are based on the works by Jackson [46], Yariv 
[47], as well as by Zvezdin and Kotov [44].

2.2.1. Wave equation. Electromagnetic fields in a medium 
can be described by the macroscopic Maxwell equations

∇× E +
∂B
∂t

= 0 (13a)

∇× H − ∂D
∂t

= J (13b)

∇ · B = 0 (13c)

∇ · D = ρ (13d)

together with the constitutive equations

D = ε0E + P (14a)

H =
1
µ 0

B − M. (14b)

In the following, it is assumed that no sources are present, i.e. 
J = 0 and ρ = 0. Furthermore, the time-harmonic ansatz

Ψ(r, t) = Ψ(r)e−iωt (Ψ = E, B, D, H) (15)

turns the equations (13) and (14) into

∇× E(r)− iωB(r) = 0 (16a)

∇× H(r) + iωD(r) = 0 (16b)

∇ · B(r) = 0 (16c)

∇ · D(r) = 0 (16d)

and

D(r) = ε0ε(ω)E(r) (17a)

B(r) = µ0µ(ω)H(r). (17b)

In general, both the relative permittivity ε(ω) and the rela-
tive permeability µ(ω) are tensorial quantities and frequency 
dependent. However, at optical frequencies we can assume 
that µ = 1 [1]. By applying the operator ∇× to equation (16a) 
and by using the relations ∇× (∇× E) = ∇(∇ · E)−∆E 
and (16d), the Helmholtz wave equation

∆E(r) +
ω2

c2
0
ε(ω)E(r) = 0 (18)

is obtained. This differential equation describes the evolution 
of an electromagnetic wave inside a medium with a given 
dielectric tensor ε(ω).

2.2.2. Propagation in anisotropic media. The effect of a 
static magnetic field on a MO material can be expressed by 
means of the dielectric tensor of the material. In the follow-
ing we consider an anisotropic MO material with an applied 
static magnetic field B pointing in z direction. Furthermore, 
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we assume that the principal dielectric axes of the material are 
ex, ey, and ez . In this case, the dielectric tensor takes the form

ε =




εx +ig(B) 0
−ig(B) εy 0

0 0 εz


 . (19)

The magnetic-field induced off-diagonal elements of ε are the 
characterizing property of MO materials and the origin for all 
MO effects, such as the Faraday effect or the MO Kerr effect. 
The quantity g is often referred to as gyration coefficient. For 
small magnetic fields the gyration coefficient is usually pro-
portional to B, whereas for larger magnetic fields saturation 
sets in. This is also the case for the materials EuSe and EuS, 
which are utilized in the MO nanostructures presented in later 
sections. It should be noted that in the absence of absorption 
the permittivity tensor must be hermitian, i.e. εij = ε∗ji, which 
implies that g must be real in this case [1].

To solve the wave equation (18) we make the ansatz for a 
plane wave propagating in z-direction:

E(r) = Ẽeikz. (20)

Since we can assume that the amplitude vector Ẽ lies within 
the xy plane, we omit its z component in the following deriva-
tions. Hence, we can reduce the permittivity tensor to

ε =

(
εx +ig
−ig εy

)
. (21)

Inserting (20) and (21) into the wave equation (18) leads to the 
eigenvalue problem

εẼ = λẼ (22)

with

λ = k2 c2
0

ω2 . (23)

Solving the eigenvalue problem yields the eigenvalues

λ1,2 =
εx + εy

2
∓
√

g2 +
(εx − εy)2

4
 (24)

and the eigenvectors

Ẽ(1,2) =



(

εx−εy

2 ∓
√

g2 +
(εx−εy)2

4

)
1

−ig

1


 . (25)

Consequently, the general solution of (18) is then given by the 
superposition

E(r) = A Ẽ(1)eik1z + B Ẽ(2)eik2z (26)

with

k1,2 =
ω

c0

√
λ1,2. (27)

The coefficients A and B are determined by the initial con-
dition. For example, the case of x-polarized incident light 
implies that Ey(z  =  0)  =  0 and B  =  −A, which leads to

E(r) = A
[
Ẽ(1)eik1z − Ẽ(2)eik2z

]
. (28)

Similarly, y-polarized incident light is described by 

Ex(z  =  0)  =  0 and implies B = −AẼ(1)
x /Ẽ(2)

x . This leads to a 
wave propatation of the form

E(r) = A

[
Ẽ(1)eik1z − Ẽ(1)

x

Ẽ(2)
x

Ẽ(2)eik2z

]
. (29)

In both cases, the coefficient A is an arbitrary normalization 
parameter depending on the incident intensity. The equa-
tions (28) and (29) are utilized in section 5.1 where the mag-
neto-optical response of hybrid plasmonic nanostructures is 
described by means of a birefringent effective medium.

2.2.3. Faraday rotation. Many bulk magneto-optic materials, 
such as EuSe and EuS are not birefringent, i.e. the diagonal 
elements of the dielectric function are equal. In this case, the 
relative permittivity tensor (21) simplifies to

ε(ω) =

(
εx +ig
−ig εx

)

 

(30)

and the solution of the eigenvalue problem (22) turns into

λ1,2 = εx ± g (31)
and

Ẽ(1,2) =

(
±i
1

)
.

 

(32)

Furthermore, the absolute value of the gyration is typically 
significantly smaller than the diagonal permittivity, i.e. 
|g|/|εx| � 1. In this approximation, we can write the two 
propagation constants k1 and k2 as

k1,2 =
ω

c0

√
εx ± g ≈ κ∓ γ, (33)

with

κ =
ω

c0

√
εx (34)

γ = −1
2
ω

c0

g
√
εx

. (35)

From this, through equation  (28) for x-polarized incident 
light, we obtain

E(z, t) = Aei(κz−ωt)
[(

+i
1

)
e−iγz −

(
−i
1

)
e+iγz

]
. (36)

To evaluate how the polarization state of the wave (36) 
evolves, we can apply the relations (12) to derive the corre-
sponding Stokes parameters

S0 = +4|A|2 cosh (2 Im {γ} z) (37a)

S1 = +4|A|2 cos (2 Re {γ} z) (37b)

S2 = −4|A|2 sin (2 Re {γ} z) (37c)

S3 = −4|A|2 sinh (2 Im {γ} z) . (37d)
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Furthermore, in the limit of a relatively weak gyration, i.e. for 
|γ|z � 1, the relations (11) and (35) yield

θ =
1
2
ω

c0
Re

{
g

√
εx

}
z and (38a)

ψ =
1
2
ω

c0
Im

{
g

√
εx

}
z. (38b)

From this we see that in the case of low material losses and a 
small imaginary part of g, the ellipticity ψ stays small, while 
the tilting angle θ increases linearly with the propagation dis-
tance z. Since the gyration g is proportional to the applied 
magnetic field B, it is very common to write equation (38a) in 
the alternative form

θ = VBz, (39)
where the proportionality factor V  is commonly referred to 
as Verdet constant. However, the term constant is a bit mis-
leading, since V  is actually frequency dependent. This is 
immediately clear by considering that equation (38a) contains 
both the factor ω and the gyration g, which is also frequency 
dependent. The magnetic field induced polarization rotation 
described by the expression (39) is called Faraday effect and 
it is illustrated by the blue wave in figure 2. It is important to 
realize that the magnetic field induced polarization rotation 
breaks the time-reversal symmetry. The result of this sym-
metry breaking becomes clear when a mirror is added behind 
the MO material as indicated in figure  2. In relation to the 
magnetic field vector, the backward propagating orange light 
wave is rotated in the same direction and by the same angle 
as the forward propagating blue wave. Hence, the polarization 
states of the blue and orange waves on the left-hand side are 
different. Such a nonreciprocal behavior is not found in other 
linear and static systems [48]. For example, although an opti-
cally active medium [6] can also induce a polarization rota-
tion of transmitted light, any back-reflected wave would rotate 
back to the polarization state of the incoming wave. In other 
words, in the case of an optically active medium the direc-
tion of polarization rotation is determined by the direction of 
the wave vector, whereas the direction of Faraday rotation is 
determined by the direction of the magnetic field.

This nonreciprocal nature [4, 49] of the Faraday effect 
directly leads to its most prominent application, namely opti-
cal isolation: if the rotation angle θ is equal to 45◦, the polari-
zations of the forward and backward propagating waves on the 
left-hand side of figure 2 are perpendicular. In this case, the 
addition of one vertically aligned polarizer on the left-hand 
side of the MO material and another polarizer, which is tilted 
by 45◦, on the right-hand side of the MO material, allows light 
to pass the system only in forward direction. Light traveling 
through the system in backward direction is blocked by the 
polarizer on the left side.

2.2.4. Magneto-optic effects in reflection. The Faraday effect 
is only one of several phenomena arising from the magn-
etically induced off-diagonal elements in ε(ω). For example, 
also the reflection behavior of a MO material can change 
depending on the applied magnetic field. This phenomenon 
is referred to as magneto-optic Kerr effect (MOKE). Since 
the MOKE does rely on reflection rather than propagation it 
cannot only be observed for transparent materials but also for 
opaque materials such as ferromagnetic metals.

Although the work presented in this review concentrates on 
the Faraday effect, in the following a brief overview of the dif-
ferent types of the MOKE is given. As illustrated in figure 3, 
the different types are classified depending on the direction of 
the magnetization in relation to the plane of incidence and the 
material surface [44]. The black arrows indicate the wavevec-
tors of the incident and reflected light. If the magnetization is 
perpendicular to the material surface, there occurs a magn-
etically induced polarization rotation as well as a change in 
ellipticity of the reflected light. This effect is referred to as 
the polar MOKE. Similarly, if the magnetization is parallel 
to the surface the longitudinal MOKE occurs. Here, the mag-
netization also induces a polarization rotation and an elliptic-
ity change. If the magnetization is perpendicular to the plane 
of incidence, the intensity of the reflected light changes with 
the magnitude of magnetization. This phenomenon is called 
transverse MOKE.

Since the polarization rotation of the MOKE only scales 
with the off-diagonal elements of the permittivity tensor, the 
MOKE is generally much weaker than the Faraday effect, 
which also scales with the optical path length through the 
material. For example, although Fe, Co and Ni possess an 

Figure 2. Illustration of the Faraday effect for the case of a real 
gyration g and negligible absorption. When light propagates through 
a magneto-optical material along the direction of the applied 
magnetic field (forward direction) the polarization plane gets 
rotated by the angle θ. Backward propagating light is rotated by the 
same angle and in the same direction (relative to the magnetic field).

Figure 3. Illustration of the different manifestations of the 
magneto-optic Kerr effect (MOKE). While polar and longitudinal 
MOKE describe a magnetically induced polarization rotation and 
ellipticity change, in the case of transversal MOKE a magnetization 
dependent modulation of the reflected intensity occurs.
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extremely large Verdet constant (see section 2.4) the rotation 
angles arising from the polar MOKE are usually less than 1 
deg in the visible [44].

2.3. Microscopic description of the Faraday effect

In the section 2.2 it has been shown that the magneto-optic 
response of a material can be described phenomenologically 
by the anti-symmetric off-diagonal elements of the material’s 
permittivity tensor. However, the microscopic mechanisms 
which give rise to these off-diagonal elements were not dis-
cussed. In this section  the microscopic origin of magneto-
optic effects is explained by means of both a classical and a 
quantum mechanical approach.

2.3.1. Classical description. The microscopic origin of the 
magnetically induced off-diagonal elements in (19) can be 
understood intuitively in the picture of an extended Lorentz 
oscillator model. This model and the calculations in this sec-
tion  are largely based on the descriptions given in [50–52]. 
However, the model is presented in a slightly generalized way, 
which allows a more direct link to the development of the 
oscillator model of magnetoplasmonics presented in section 5. 
As in the standard version of the Lorentz oscillator model for 
dielectrics [52], the bound electrons of a solid are treated 
as classical mechanical oscillators, which are suspended by 
three springs. This is illustrated by figure 4. Furthermore, as 
each oscillator is assumed to have charge q, it is driven by 
the harmonically oscillating electric field E(t) = E e−iωt of 
the light wave. The mass and the displacement vector of the 
oscillator are denoted by m and r = (x, y, z)T, respectively. To 
account for magneto-optic effects, in the extended version of 
the model a static magnetic field B is assumed to be present, 
which additionally exerts the Lorentz force

FL = q ṙ × B (40)

on the oscillators. For the following discussions we assume 
that the magnetic field points in z direction. In this case, the 

Lorentz force is given by FL = qB(ẏ,−ẋ, 0)T and the resulting 
equations of motion are

mẍ = −dxx − 2γxẋ + qBẏ + qEx exp (−iωt) (41a)

mÿ = −dyx − 2γyẏ − qBẋ + qEy exp (−iωt) (41b)

mz̈ = −dzx − 2γzż + qEz exp (−iωt) . (41c)

The quantities {dx, dy, dz} and {γx, γy, γz} denote the stiffness 
and damping coefficients of the springs. To solve the equa-
tions, we start by making a time harmonic ansatz for the oscil-
lator displacement, i.e.

r(t) = r0 exp (−iωt) , (42)

which turns the equations (41) into

(−ω2 +Ω2
x − 2iΓxω)x0 + iωωcy0 =

q
m

Ex (43a)

(−ω2 +Ω2
y − 2iΓyω)y0 − iωωcx0 =

q
m

Ey (43b)

(−ω2 +Ω2
z − 2iΓzω)z0 =

q
m

Ez, (43c)

with Ω2
i = di/m and Γi = γi/m (i = x, y, z) and ωc = qB/m. 

The equations  (43) can be reformulated in the matrix form, 
which yields

M(ω) r0 =
q
m

E, (44)

with

M(ω) =




Mx +iωωc 0
−iωωc My 0

0 0 Mz


 (45)

and Mi(ω) = −ω2 +Ω2
x − 2iΓxω, (i = x, y, z). Assuming that 

n is the oscillator density in the medium, we can express the 
macroscopic electronic polarization as

P = nqr0 =
nq2

m
M−1E. (46)

Furthermore, the comparison with

P = ε0χE (47)

allows to identify the electronic susceptibility

χ(ω) = ω2
qM(ω)−1, (48)

with

ωq =

√
nq2

ε0m
. (49)

The optical response of a material is usually expressed by the 
electric permittivity tensor ε = 1 + χ, where 1 denotes the 
identity matrix diag(1, 1, 1). To also account for a (scalar) 
background susceptibility due to other off-resonant electronic 
polarizations [52], we write the permittivity in the more gen-
eral form ε = ε∞1 + χ, where ε∞ corresponds to the value of 
the diagonal permittivity elements for infinite frequency. With 
that, we arrive at

Figure 4. Schematic drawing of the mechanical oscillator model 
for magneto-optic solids. It corresponds to the standard Lorentz 
oscillator model for dielectrics, but with the addition of a static 
magnetic field, which exerts a Lorentz force on the bound electrons.
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ε(ω) = 1ε∞ + ω2
qM(ω)−1. (50)

In the anisotropic case, i.e. when the stiffness and damp-
ing coefficients of all oscillators are different, the inverse of 
M(ω) and thus also the permittivity tensor ε(ω) exhibit a very 
complicated ω dependence. However, many  magneto-optical 
materials are isotropic, that is, Ωx = Ωy = Ωz = Ω and 
Γx = Γy = Γz = Γ. In this case we obtain

ε =



ε11 ε12 0
ε21 ε22 0
0 0 ε33


 (51)

with

ε11 = ε22 =
ω2

q(−ω2 +Ω2 − 2iΓω)
(−ω2 +Ω2 − 2iΓω)2 − ω2ω2

c
+ ε∞ (52a)

ε12 = − ε21 =
−iωωcω

2
q

(−ω2 +Ω2 − 2iΓω)2 − ω2ω2
c

 (52b)

ε33 =
ω2

q

−ω2 +Ω2 − 2iΓω
+ ε∞. (52c)

From the equations  (52) we can see that the magnetic field 
not only influences the off-diagonal elements of the di electric 
function but also the diagonal elements, which can be regarded 
as the classical manifestation of the Zeeman effect [51]: In the 
case of low damping (Γ is small), the resonance condition for 
ε11 is given by

ω ≈ Ω± ωc

2
, (53)

which means that the material resonance is split by the magn-
etic field.

However, in most magneto-optical applications, the influ-
ence of the magnetic field on the diagonal components can be 
neglected, since usually |ωc| � ω,Ω,Γ. In this approximation 
the components of ε reduce to

ε11 = ε22 = ε33 =
ω2

q

−ω2 +Ω2 − 2iΓω
+ ε∞ (54a)

ε12 = −ε21 =
−iωωcω

2
q

(−ω2 +Ω2 − 2iΓω)2 . (54b)

The model function (54) provides a very good qualitative 
description of the magneto-optic response of many materials. 
There are several important properties of the model: firstly, 
since ωc is proportional to the magnetic field, the model cor-
rectly predicts a linear relation between the off-diagonal ele-
ments of the permittivity and the magnetic field. In the regime 
of weak magnetic fields, this is the case for most magneto-
optic materials. Furthermore, the model provides a Kramers–
Kronig-consistent relation between the real and imaginary 
part of ε12 [44].

The permittivity function can be easily implemented in 
many numerical simulation tools. However, to obtain quanti-
tatively correct simulation results, the free model parameters 
in the relations (54) have to be fitted to measurement data. For 

some MO materials it can be necessary to add further oscilla-
tors to the polarization (46) with different individual param-
eter sets, in order to account for a more complex MO behavior.

2.3.2. Quantum mechanical description. Compared to the 
simple mechanical model provided in section 2.3.1 the advan-
tage of the following quantum mechanical description is that 
it can explain different dispersion behaviors of the magneto-
optic spectra (i.e. diamagnetic and paramagnetic lineshapes) 
as well as the influence of temperature on the magnitude of 
the Faraday rotation. The following discussion is derived from 
[44] and [53].

To understand the origin of Faraday rotation in atomic sys-
tems, we will make use of the fact that Faraday rotation can 
be regarded as a manifestation of magnetic circular dichroism 
(MCD), i.e. different absorption of right-handed circularly 
polarized (RCP) and left-handed circularly polarized (LCP) 
light [44]. The reason is that it is much simpler to relate atomic 
properties to MCD than to the Faraday effect directly. We 
note in passing, that, as in the case of optical activity [6, 54], 
polarization rotation and circular dichroism are connected via 
Kramers–Kronig relations [44].

In magneto-optics it is common to distinguish two contrib-
utions to MCD: firstly, due to the Zeeman effect, atomic lev-
els are split into several levels that can be excited only with 
light of the correct handedness. This results in absorption 
maxima of LCP and RCP light which are slightly split in 
energy. As a consequence, the absorption of LCP and RCP 
is different for most wavelengths. This mechanism is referred 
to as diamagn etic Faraday rotation, as it often occurs in dia-
magnetic mat erials. The second mechanism contributing to 
MCD (if present) usually exceeds the diamagnetic contrib-
ution: due to temperature or other influences, the effective 
oscillator strength of either the LCP or RCP transition can 
be suppressed. This can dramatically increase the absorption 
difference of LCP and RCP and thus the Faraday rotation. 
This mechanism is called paramagnetic Faraday rotation as 
paramagnetic materials often exhibit such a behavior. At this 
point it should be emphasized that the terms diamagnetic and 
paramagnetic are not related to the magnetic susceptibility but 
are part of an established naming scheme for classifying the 
dispersion in magneto-optical spectra [44].

A more detailed comparison between the diamagnetic and 
paramagnetic mechanisms is illustrated in the figures 5(a) and 
(b) respectively. In the diamagnetic case the ellipticity spec-
trum is S-shaped (orange line) whereas the Faraday rotation 
shows a peak surrounded by two smaller negative peaks (blue 
line). This behavior is very similar to chiral media [54]. The 
lower part of figure 5(a) shows an exemplary and idealized 
energy level scheme which would result in such a magneto-
optic dispersion. In this example we consider a transition from 
a 1S0 state to a 1P1 state. Due to the magnetic field the 1P1 
state is split into three states with quantum numbers MJ  =  0, 
+1, −1. An incoming LCP or RCP photon induces a trans-
ition with ∆M = +1 or ∆M = −1, respectively. Due to the 
magnetic splitting, the absorption lines of the LCP and RCP 
transitions (denoted by σ+ and σ−) are shifted in energy. 
Thus, the absorption for LCP and RCP light is different for 
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most wavelengths and results in the depicted Faraday rotation 
dispersion. We note that this is in fact the dispersion behav-
ior as predicted by the mechanical oscillator description in 
section 2.3.1.

A different behavior can be observed in the paramagnetic 
case, which is schematically depicted in figure 5(b). This situ-
ation arises when the oscillator strengths of the LCP and RCP 
transitions is significantly different. To illustrate this, in the 
lower part of figure  5(b) an idealized energy level diagram 
is depicted. The transition energies and the magnetic field 
induced splitting are assumed to be the same as in the dia-
magnetic example. Hence, there should also be a diamagnetic 
contribution to the Faraday rotation spectrum with the same 
magnitude. However, here the usually much stronger para-
magnetic mechanism dominates the magneto-optical spectra: 
For T → 0 K the population probability of the (MJ  =  −1) 
level is much higher than for the (MJ  =  +1) level, resulting in 
a magnetization. Therefore, the σ+ transition dominates. This 
difference in oscillator strength is responsible for the para-
magnetic Faraday rotation dispersion.

The absolute magnitude of the magneto-optical response 
depends on the specific atomic structure of the atoms in the 
medium. In the case of solids, the resulting band structure 
is critical. There are many factors that contribute to a strong 
magneto-optic response and also to a dispersion behavior 
deviating from the two idealized cases discussed above. This 
includes spin-orbit interactions, exchange interactions, and 
further effects. A more detailed compilation of possible influ-
ences is left to specialized literature, such as [44, 53, 55, 56].  
However, in the following it is motivated why spin-orbit inter-
action is one of the most important ingredients for a large 
Faraday rotation response (as is the case for Eu compounds).

To understand the influence of spin-orbit coupling, we con-
sider the exemplary dipole transitions depicted in figure 6. The 
diagram shows transitions from a 2S1/2 state to 2P states. Due 
to the spin-orbit interaction the 2P state is split into the two 
levels 2P1/2 (J  =  1/2) and 2P3/2 (J  =  3/2). The presence of a 
magnetic field lifts the degeneracy of levels with the same total 

angular momentum. The arrows indicate the dipole allowed 
transitions which fulfill the selection rule ∆Mj = ±1. It can 
be shown [44] that the non-zero transition dipole moments d±

ab 
fulfill the relations

|d+
14|

2 = |d−
23|

2 = (2/9)d2 (55)

|d−
15|

2 = |d+
28|

2 = (1/3)d2 (56)

|d+
17|

2 = |d−
26|

2 = (1/9)d2, (57)

where d is constant. For T → 0 only level 1 is populated 
and only the transitions to the levels 4, 5 and 7 are possible. 
Neglecting the difference in transition frequency, their contrib-
ution to MCD (and thus Faraday rotation) would cancel out, 
since from equation (55) follows |d+

14|2 − |d−
15|2 + |d+

17|2 = 0. 
This means that the Faraday rotation occurs only due to the 
different transition frequencies, as it was the case in the dia-
magnetic mechanism discussed above. It can be seen directly 
from figure 6 that, with increasing spin-orbit splitting, the dif-
ference in the transition frequencies become larger and thus 
the overall Faraday rotation becomes larger. When the temper-
ature increases, the population of level 2 starts to grow and 
also contributes to the Faraday rotation. In the high temper-
ature limit, the populations of level 1 and 2 are the same and it 
can be shown that the overall contribution to the Faraday rota-
tion by the transitions from level 2 is of the same magnitude as 
the contribution by the transitions from level 1, yet with oppo-
site sign [44]. More precisely, the Faraday rotation is propor-
tional to the population difference between level 1 and 2, i.e. 
to the average magnetic moment of the atom or ion (as in the 
discussion of the paramagnetic mechanism). In summary, we 
have seen that Faraday rotation tends to decrease with higher 
temperatures (and lower average magnetic moment) and 
strong spin-orbit interaction can be beneficial for large rota-
tion angles.

2.4. Comparison of typical magneto-optic materials

Materials with a particularly strong magneto-optic response 
are usually referred to as magneto-optic (MO) materials. The 
general properties of these materials differ strongly, not only 
with respect to the magnitude of the MO response, but also in 

Figure 5. Comparison of the diamagnetic (a) and paramagnetic (b) 
Faraday rotation mechanisms. The line shapes of Faraday rotation 
and ellipticity are drawn schematically. In (b), the Mj  =  −1 level is 
more densely populated, indicated by a thicker line.

Figure 6. Schematic diagram of electric dipole transitions to 
illustrate that a large spin-orbit coupling can contribute to strong 
Faraday rotation.
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many other aspects. For example, there are metallic as well 
as non-metallic MO materials, MO materials with different 
magnetic susceptibility, as well as transparent and opaque 
materials (depending on wavelength). Furthermore, the MO 
properties usually strongly depend on temperature. In this 
section, some of the most relevant MO materials are com-
pared. However, it should be mentioned that the collection of 
mat erials provided here is not complete, especially because 
there are many doped variants of the listed materials as well 
as materials with slightly modified chemical composition. An 
extended overview can be found in more specialized literature 
[44, 53, 56–60].

Figure 7 gives a rough overview of the range of availa-
ble MO materials and the magnitude of the achievable MO 
response in terms of Faraday rotation per unit length. The data 
was extracted from [55]. The graph shows that the materials 
with the largest specific Faraday rotation response are ferro-
magnetic metals such as Fe, Co, and Ni. Also quite strong 
Faraday rotation can be achieved by using Europium com-
pounds at low temperatures such as EuSe or by CrI3, CrBr3 
and MnBi. EuS, EuTe and EuO are not shown in the dia-
gram but exhibit optical and MO properties similar to EuSe  
[53, 58]. Relatively weak Faraday rotation is obtained by 
yttrium–iron–garnet (YIG) as well as by CrCl3 at shorter 
wavelengths. We should note at this point that although the 
spectrum of YIG is plotted for low temperatures [55] the 
material also exhibits Faraday rotation of comparable magni-
tude at room temper ature [61].

In many cases the specific Faraday rotation is not a suit-
able figure  of merit for the performance of a MO material. 
Especially, when a MO material is to be used in transmission 
geometry, the absorption of the material is relevant. Thus, 

a more useful way to characterize MO materials can be the 
specific Faraday rotation normalized to attenuation (in dB 
cm−1) shown in figure 8 (data from [55]). This graph reveals 
that ferromagnetic metals, which have by far the largest MO 
response, also exhibit the largest optical losses. Although their 
room temperature compatibility is convenient, their opacity 
makes them only useful for MO effects in reflection geometry 
(e.g. for the MO Kerr effect). In contrast, EuSe exhibits both 
high MO response and high transparency. This is also the case 
for other Eu compounds such as EuS, EuTe, and EuO, which 
are not plotted here [53, 58]. Although the ratio of Faraday 
rotation and attenuation can be a meaningful quantity, it 
should not be regarded as an universal figure of merit for MO 
applications. For example, in the near IR YIG exhibits a very 
high ratio of Faraday rotation and attenuation. However, the 
absolute Faraday rotation in this frequency region is extremely 
weak (see figure 7). This means that a polarization rotation 
device made of YIG would require a relatively large amount 
of MO material in order to achieve a sizable rotation angle. 
Hence, for realizing a small scale Faraday rotator, an Eu com-
pound would be more suitable, yet at lower temperatures.

In state of the art nanoscale MO systems, there are 
three predominant groups of utilized MO materials: metals  
[21, 30–33], iron garnets [34, 36, 62, 63] and Eu compounds 
(sections 4 and 6). Due to the high optical losses of metals, the 
first group is mainly used for systems that operate in reflection 
geometry (i.e. for utilizing the MO Kerr effect). In the follow-
ing, we focus on the comparison between iron garnets and Eu 
compounds, which are suitable for the utilization in Faraday 
geometry.

Since garnets possess a relatively low Verdet constant, 
there have been efforts to modify their chemical structure in 

Figure 7. Faraday rotation per unit length for different magneto-
optic materials. The data were extracted from [55].

Figure 8. Faraday rotation normalized to attenuation in dB for 
different magneto-optic materials. The data were extracted from 
[55].
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order to enhance their MO response. For example, in the case 
of YIG, substituting yttrium with bismuth leads to a greatly 
increased Faraday effect [60]. However, the relatively large 
Faraday rotation of bismuth–iron–garnet (BIG) comes with 
significant fabrication difficulties: BIG only forms in sophis-
ticated non-equilibrium processes, which involve pulsed laser 
deposition as well as a subsequent high temperature anneal-
ing. This makes the fabrication of hybrid systems incorporat-
ing plasmonic nanostructures very challenging and restricts 
the number of possible structure geometries considerably. For 
example, any gold nanostructures that are incorporated inside 
a BIG film would get damaged due to the high temperatures. 
Moreover, BIG only grows on garnet substrates or special 
buffer layers. However, solutions to overcome these problems 
such as coating with a few nm of Al2O3 or SiO2 by evapora-
tion or atomic layer deposition might be possible [64, 65].

Eu compounds such as EuSe and EuS provide very simple 
fabrication by physical vapor deposition and are also compat-
ible with standard electron beam lithography processes. As 
such, these materials can be used to realize sophisticated layer 
based nanostructure geometries consisting of both magneto-
optic an plasmonic materials. EuSe and EuS possess very 
strong MO response below and around their Curie temper-
atures at 7 K and 16.6 K, respectively.

For the sake of completeness, it should be mentioned 
that outside of the visible and near infrared regime there is a 
higher availibility of materials with both high Verdet constant 
and reasonable transparency. For example, in 2011 Shuvaev 
et  al showed that in the THz regime HgTe can provide 14◦ 
Faraday rotation already for a 70 nm thick film at 1 T [66]. 
Furthermore, Crassee et al demonstrated in 2010 that at low 
temperatures a single layer of graphene can produce Faraday 
rotation on the order of 5◦ in the THz regime for a magnetic 
field of 7 T [67].

2.5. Plasmonics

In this section the basic optical properties of metal interfaces 
and nanostructures are summarized. This allows us to under-
stand the emergence of localized surface plasmon resonances 
in gold nanostructures as used in the following sections. It will 
turn that plasmonic resonances are of fundamental importance 
for tailoring the dispersion properties of hybrid magnetoplas-
monic systems.

This section begins with a discussion of the general optical 
properties of metals based on the plasma model (also known 
as Drude model). This is the foundation for the subsequent 
analysis of the two most prominent plasmonic phenomena: 
surface plasmon polaritons and localized surface plasmon 
resonances. As this section cannot provide full coverage of all 
aspects of plasmonics and related electrodynamic effects, the 
interested reader can find very detailed further discussions in 
the works [46, 68], which this section is based on.

2.5.1. The dielectric function of metals. The characterizing 
optical properties of metals can be derived from the plasma 
model, also known as the Drude model. For many metals 

the validity of this simple model extends over a surprisingly 
wide wavelength range. The basic assumption of the model is 
that the unbound electrons with number density n are mov-
ing freely against the fixed and positively charged ions. This 
means that the electrons are not subjected to a restoring force 
as in the Lorentz oscillator model discussed in section 2.3.1. 
However, as in the Lorentz model, the electrons are assumed 
to be driven by the time harmonic electric field E(t) = E0e−iωt  
of the light wave. The resulting equation  of motion for the 
electron displacement x(t) is given by

mẍ(t) + mγẋ(t) = −e0E0e−iωt, (58)

where m and  −e0 are the effective mass and charge of an indi-
vidual electron. Furthermore, the damping constant γ = 1/τ  
corresponds to the characteristic collision frequency of a 
plasma electron. The differential equation (58) can be solved 
by the time harmonic ansatz

x(t) = x0e−iωt, (59)

which leads to the solution

x(t) =
e0

m(ω2 + iγω)
E(t). (60)

Furthermore, by means of equation  (60), the macroscopic 
polarization of the plasma P = −ne0x can be written as

P =
−ne2

0

m(ω2 + iγω)
E. (61)

With equation  (61) we have now established the relation 
between the polarization of the plasma and the applied elec-
tric field. Hence, via the relation P = ε0χ(ω)E, the electric 
susceptibility χ(ω) can be identified as

χ(ω) =
−ne2

0

mε0(ω2 + iγω)
. (62)

Finally, by introducing the plasma frequency ωp

ωp =
ne2

0

mε0
 (63)

and by using ε(ω) = 1 − χ(ω), the complex dielectric func-
tion of the free electron gas can be written as

ε(ω) = 1 −
ω2

p

ω2 + iγω
. (64)

The real and imaginary parts of ε(ω) are given by

Re [ε(ω)] = 1 −
ω2

pτ
2

1 + ω2τ 2
 (65)

Im [ε(ω)] =
ω2

pτ

ω + ω3τ 2 . (66)

In order to increase the agreement between the modeled 
permit tivity (64) and the one of real metals, it can be useful to 
introduce a slight modification. By adding a constant param-
eter to the expression (64), the contribution of the positive 
metal ions to the overall polarization can be taken into account 
[68]. With this modification, the dielectric function becomes
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ε(ω) = ε∞ −
ω2

p

ω2 + iγω
,

 
(67)

where ε∞ is the permittivity at infinite frequency. Before the 
behavior of this model function is discussed in further detail, 
the role of the plasma frequency ωp should be clarified.

In order to understand the physical meaning of the plasma 
frequency ωp, we now consider a plane wave propagating in 
an electron plasma with the dielectric function (64). For the 
sake of simplicity any material losses are neglected, i.e. we 
assume γ = 0 and obtain

ε(ω) = 1 −
ω2

p

ω2 . (68)

For the propagating electromagnetic wave we make the ansatz

E(z, t) = E0ei(kz−ωt). (69)

By inserting the equations (68) and (69) into the Helmholtz 
wave equation (18) the dispersion relation

k2 =
ω2

c2
0
ε(ω) =

ω2 − ω2
p

c2
0

 (70)

is obtained. It is evident that there are two distinct frequency 
regimes: for ω < ωp the propagation constant k becomes 
imaginary, i.e. there is no light propagation possible. On the 
other hand, for ω > ωp transverse electromagnetic waves can 
propagate through the plasma, as k is real.

A physically interesting situation occurs if ω = ωp. In 
this case, the propagation constant k vanishes, i.e. the elec-
tron excitation becomes a collective movement. Furthermore, 
the dielectric function ε(ωp) becomes zero. Together with 
D = ε0ε(ωp)E = 0 the equation (14) yields

E = −P/ε0, (71)

which means that the electric field is purely originating from 
the polarization of the medium. Figure 9 illustrates how this 
situation can be interpreted in the case of a flat piece of metal. 
The electrons are collectively displaced by a distance d lead-
ing to the surface charges σ = −ne0d and σ = +ne0d on the 
two sides of the slab. The attractive force between the two 
charged surfaces normalized to a single electron can be writ-
ten as F = md̈ = −e0|E| with |E| = ne0d/ε0. This results in 
the equation of motion

d̈(t) + ω2
pd(t) = 0. (72)

From this follows that the plasma frequency can be inter-
preted as the characteristic frequency of a collective electron 
gas that is oscillating relatively to a fixed positively charged 
background. The excitation of such an oscillation is referred 
to as volume plasmon. At this point it should be noted that vol-
ume plasmons are a fundamentally different type of excitation 
compared to surface plasmons and localized surface plasmons, 
which is discussed in the next sections. Volume plasmons are 
of longitudinal nature and can thus not couple to transverse 
light waves. Thus, they do not play a role for the magnetoplas-
monic systems discussed in the following sections.

Figure 10 depicts a comparison of the Drude model func-
tion (67) (orange curves) fitted to the measured permittivity of 
the most popular plasmonic material, namely gold (blue dots). 
The data was extracted from [68]. The top panel shows the 
imaginary part, whereas the lower panel displays the real part 
of ε(ω). For photon energies below 2 eV (above 650 nm), there 
is good agreement between the model and the measurement. 
However, for larger frequencies the interband transitions 
of gold cause an increase of Im(ε). Silver exhibits a simi-
lar behavior (not shown here), however the accuracy of the 
Drude model extends until electron energies of about 3.5 eV 
(350 nm). Also for many other metals the Drude model yields 
a very accurate description of the permittivity, especially in 
the infrared.

In principle, the Drude model can be extended to take the 
interband transitions into account by adding further oscilla-
tors that contribute to ε(ω). In contrast to the equations  of 
motion (58), these additional oscillators are then subjected 

Figure 9. Illustration of a volume plasmon. The electrons in the 
metal are collectively driven at the plasma frequency ωp. They are 
displaced by the distance d relative to positively charged ions. This 
results in a surface charge density σ = −ne0d.

Figure 10. Comparison of the measured dielectric function of gold 
(blue dots) and the fitted model function (67) (orange curves). For 
low frequencies there is a good agreement between the modeled 
permittivity and the measurement. However, for higher frequencies 
interband transitions cause a significant deviation from the model. 
The measurement data was extracted from [68].
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to a restoring force in analogy to the Lorentz oscillators dis-
cussed in section 2.3.1.

2.5.2. Surface plasmon polaritons. Surface plasmon polari-
tons (SPPs) are electromagnetic waves propagating along 
metal-dielectric interfaces. Although SPPs are not directly 
utilized in the magnetoplasmonic systems analyzed in later 
sections, the discussion of their most important properties 
provides an important context for the analysis of localized 
surface plasmon resonances presented in the next section.

In the following, the electrodynamics of a SPP are ana-
lyzed for the simplest case of a flat metal-dielectric interface 
at z  =  0, as illustrated in figure  11. For an electromagnetic 
wave propagating in x direction we make the ansatz

E(r, t) = E(z)ei(βx−ωt) (73a)

H(r, t) = H(z)ei(βx−ωt). (73b)

Since the geometry is invariant in y direction, H(z) and E(z) 
can be assumed to be independent of y. By inserting (73) into 
Maxwell’s equations for time harmonic fields (16) it can be 
shown that there are two classes of solutions: TE-polarized 
waves, with only the components Hx, Hz and Ey being non-
zero and TM-polarized waves, with only the components Ex, 
Ez and Hy being non-zero. However, it should be noted that it 
can be shown that TE waves do not fulfill the condition that 
Ex and Dz are continuous at the metal-dielectric interface [68]. 
Hence, SPPs are always TM polarized. In the case of the TM 
waves, the Maxwell equations (16) yield

∂2

∂z2 Hy(z) +
[
ω2

c2
0
ε(ω, z)− β2

]
Hy(z) = 0

 

(74a)

Ex(z) =
1

iωε0ε(ω, z)
∂Hy(z)
∂z 

(74b)

Ez(z) =
−β

ωε0ε(ω, z)
Hy(z).

 
(74c)

Within the dielectric half-space (z > 0) the solutions of the 
equations (74) are given by

Hy(z) = Cde−κdz (75a)

Ex(z) = Cde−κdz iκd

ωε0εd
 (75b)

Ez(z) = Cde−κdz β

ωε0εd
(−1), (75c)

where the positive decay constant κd has to obey

κ2
d = β2 − ω2

c2
0
εd. (76)

Similary, for z  <  0 the solutions are given by

Hy(z) = Cme+κmz (77a)

Ex(z) = Cme+κmz iκm

ωε0εm
(−1) (77b)

Ez(z) = Cme+κmz β

ωε0εm
(−1) (77c)

with the condition

κ2
m = β2 − ω2

c2
0
εm (78)

for decay constant κm, wich is also positive. At the inter-
face between the two half-spaces the normal component of 
D = ε0εE and the tangential component of E have to be con-
tinuous. From this follows that Cm = Cd and

κm

κd
= −εm

εd
. (79)

Equation (79) is an important intermediate result. We see 
that modal confinement (κm,κd > 0) requires Re(εm) < 0, 
if εd > 0. In other words, SPPs indeed occur only at metal-
dielectric interfaces. Furthermore, we can use equation (79) to 

Figure 11. Illustration of a surface plasmon polariton (SPP) 
propagating along a flat metal-dielectric interface at z  =  0.

Figure 12. Dispersion diagram for surface plasmon polaritons at a 
metal-air interface (blue) and a metal-glass interface (orange). Solid 
lines correspond to the real part of the wavenumber β, whereas 
the dotted lines denote the imaginary part. The dash-dotted lines 
indicate the corresponding light cones of the dielectric half-spaces.
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eliminate κm and κd in the equations (76) and (78) and obtain 
the dispersion relation of SPPs:

β(ω) =
ω

c0

√
εm(ω)εd(ω)

εm(ω) + εd(ω)
. (80)

For the sake of simplicity, the dispersion of SPPs is discussed 
for the case of a perfect Drude metal without damping, i.e. it 
is assumed that the dielectric function of the metal half-space 
to be (64) with γ = 0. Figure 12 displays the plots of Re(β) 
(solid lines) and Im(β) (dotted lines) for a metal-air interface 
(blue) and a metal-glass interface (orange). The light cones of 
the corresponding dielectric half-spaces are indicated by dash-
dotted lines. The dielectric function of glass is assumed to be 
εd = 2.3. The plots show that the SPP wavenumber is purely 
imaginary between the plasma frequency and the character-
istic surface plasmon frequency ωSP = ωp/

√
1 + εd . Hence, 

the SPP propagation in this range is prohibited. On the other 
hand, for ω < ωSP the SPP wavenumber is purely real and the 
propagation of SPP waves is possible. For ω > ωp the metal 
becomes transparent (see section 2.5.1). Since the dispersion 
curves of the propagating SPPs lie outside of the light cones of 
the dielectric materials (dash-dotted lines), these waves cannot 
be excited by incident plane waves, as the photon energy and 
momentum cannot be conserved simultaneously. However, 
there is a variety of techniques that allow to excite SPPs by 
an incident light beam. Typical examples involve prism cou-
plers, grating couplers and other surface perturbations such as 
edges or even dust particles. Finally, it should be pointed out 
that the dielectric function of a real metal does involve signifi-
cant absorptive contributions, which result in a relatively fast 
decay of the propagating SPPs. Typical propagation lengths of 
SPPs are on the order of 10–100 μm [68].

2.5.3. Localized surface plasmon resonances. In this sec-
tion the second important type of plasmonic excitations will 
be introduced: localized surface plasmon resonances (LSPRs). 
This plasmonic phenomenon is of fundamental relevance for 
the magnetoplasmonic structures presented in later sections. 
In contrast to the surface plasmon polaritons discussed in the 
previous section, LSPRs are non-propagating excitations. 
They occur in sub-wavelength metal nanoparticles surrounded 
by a dielectric medium. Typical resonance wavelengths of 
gold and silver particles are in the visible and near infrared. 
The small particle size also results in a high surface curvature, 
which enables the direct excitation of LSPRs by plane electro-
magnetic waves. It should be pointed out that LSPRs not only 
occur in metal volumes which are confined in all three dimen-
sions, but also in structures which are infinitely extended in 
one dimension (i.e. in metal wires as utilized in the follow-
ing sections). In that case, the localized oscillation takes place 
across the wire, perpendicularly to the extended wire axis.

To understand the fundamental mechanism behind a LSPR 
it is useful to investigate the simple case of a spherical metal 
particle with a radius a well below the wavelength of light. 
This situation is illustrated in figure 13. Due to the small par-
ticle size, the electric field of a surrounding electromagnetic 
wave can be assumed to be constant within a volume of the 

size of the sphere. Hence, the electric field of the light wave 
can be treated as a static field E0 = E0ez  and the system is 
described by the Laplace equation

∆Φ(r) = 0, (81)

where the electric field is obtained via E(r) = −∇Φ(r). Any 
time-harmonic dependence can then be added subsequently to 
the static solution, i.e. E(r, t) = E(r)e−iωt. This assumption 
is known as quasistatic approximation. Since the geometry in 
figure 13 possesses revolution symmetry around the z-axis we 
can write the general solution of (81) as

Φ(r, θ) =
∞∑

l=0

[
Alrl + Blr−(l+1)

]
Pl(cos θ), (82)

where Pl are the Legendre polynomials [46]. The coefficients 
Al and Bl are determined by the following conditions: firstly, 
at the surface of the metal sphere, the tangential component 
of E(r) and the normal component of D(r) = ε0ε(ω)E(r) 
have to be continuous. Additionally, it is required that 
Φ(r, θ) → −E0r cos θ as r → ∞. Applying these conditions 
results in

Φ(r, θ) = − 3εd

ε+ 2εd
E0r cos(θ)(r < a) (83a)

Φ(r, θ) = −E0r cos(θ) +
ε− εd

ε+ 2εd
a3E0

cos(θ)

r2 (r > a). (83b)

By comparing the second term in equation (83b) to the generic 
potential of a dipole in z direction [46]

Φ(r, θ) = − 1
4πε0εd

p cos(θ)
r2 (84)

we can identify

p = 4πε0εd
ε− εd

ε+ 2εd
a3E0. (85)

Furthermore, by using E0 = E0ez  and r = rer  we can express 
the equations (83) in the form

Figure 13. Illustration of a spherical metal nanoparticle surrounded 
by a dielectric medium. If the radius a is well below the wavelength 
of light, the condition for the localized surface plasmon resonance 
can be obtained by means of the quasistatic approximation.
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Φ(r) = − 3εd

ε+ 2εd
E0 · r(r < a) (86a)

Φ(r) = −E0 · r +
ε− εd

ε+ 2εd
a3 p · r

r3 (r > a) (86b)

which is also valid for any direction of the electric field E0. So 
far, we see from equation (85) that the metal particle produces 
a static dipole field proportional to the applied electric field. 
Hence, by introducing the polarizability α(ω) via the relation 
p = ε0εdα(ω)E0, equation (85) yields the important result

α(ω) = 4πa3 ε(ω)− εd

ε(ω) + 2εd
. (87)

We see immediately that when ε(ω) approaches −2εd  the 
polarizability exhibits a resonant behavior. In the case of an 
approximately constant Im[ε(ω)] around that resonance, the 
resonance condition becomes

Re [ε(ω)] = −2εd, (88)

which is known as the Fröhlich condition. For a nanoparticle 
consisting of an ideal Drude metal without damping (with a 
dielectric function (68)) the Fröhlich condition condition is 
met at the resonance frequency

ωSPR =
ωp√

1 + 2εd
. (89)

From this we see that an increase of the refractive index 
around the metal particle causes a red-shift of the resonance. 
This behavior is utilized in refractive index sensing [69]. With 
the resonantly increased polarizability (and thus light absorp-
tion) also comes a field enhancement inside and in the vicin-
ity of the nanoparticle. This can be immediately recognized 
by deriving the electric fields E = −∇Φ associated with the 
potentials (86):

E(r) =
3εd

ε+ 2εd
E0 (r < a) (90a)

E(r) = E0 +
1

4πε0εd

3(er · p)er − p
r3 (r > a). 

(90b)
The results we have obtained by using the quasistatic approx-
imation are independent of the actual particle size and pro-
vide very good accuracy for nanoparticles with sizes below 
100 nm. For an increasing particle size the exact derivation 
of the optical response is still possible for spheres (Gustav 
Mie 1908 [70]) but it is much more complicated. For most 
complex particle shapes the derivation of the field distribution 
and resonance condition needs to be performed numerically. 
Furthermore, we should note that in the quasistatic approxi-
amtion radiative losses are neglected. These losses become 
especially relevant in the limit of low absorption [71] and 
large particle sizes [68]. One result of the radiative decay is, 
for example, that even for zero ohmic losses the actual particle 
polarizability does not fully diverge at resonance.

In summary, as a rule of thumb, for Drude metals as well 
as for real gold and silver an increase of the particle size in 
the direction of the light polarization results in a red-shift of 
the resonance wavelength and a broader absorption line [68]. 

Furthermore, as we will see in section 4, LSPRs also occur 
in less confined geometries, such as metal wires, if the light 
polarization is perpendicular to the wire, i.e. in the direction 
of the metal confinement. In analogy to the case of spheres, a 
plasmon resonance in a gold wire also red-shifts for increas-
ing wire width.

2.6. Resonances in grating-waveguide structures

The Faraday rotation enhancement mechanisms utilized in 
the sections 4–6 are based on modifying magneto-optic thin 
films such that they provide both localized surface plasmon 
resonances, as well as quasiguided waveguide resonances. 
While the origin of the first resonance type was analyzed in 
section 2.5, in this section the concept of quasiguided wave-
guide modes is discussed. The basic dispersion properties of 
these modes is motivated by first discussing the properties 
of guided modes and subsequently making the transition to 
periodically perturbed waveguide slabs via the empty lattice 
approximation. Since this approach is based on highly ideal-
ized assumptions, it does not allow to accurately calculate the 
optical response of the structures introduced in later sections. 
However, it gives a basic understanding of the most important 
properties of quasiguided waveguide modes and their origin. 
This section is based on the discussions in [37–39, 47, 72–74].

Figure 14 shows a schematic drawing of a dielectric slab 
waveguide. It consists of a thin waveguide (WG) layer with 
thickness h and permittivity εWG on top of a substrate with 
permittivity εsub. The superstrate, i.e. the half-space above 
the waveguide layer (usually air), is assumed to possess the 
di electric function εsuper. In order to allow light to be guided 
inside the center slab, the dielectric functions have to fulfill the 
condition εWG > εsub, εsuper. The entire structure is assumed to 
be extended infinitely in y-direction. The dark blue markings 
indicate a periodic perturbation of the waveguide layer with 
periodicity p. For example, this could be a corrugated upper 
surface of the waveguide film or a dielectric grating with a small 
extension in z-direction. In later sections, it is shown that in the 

Figure 14. Schematic drawing of a dielectric slab waveguide 
(light blue) on top of a substrate (grey). The superstrate above the 
waveguide is drawn as empty white space. The dark blue features 
indicate a periodic perturbation that is assumed to involve only non-
metallic elements. Furthermore, the perturbation is assumed to be 
so small that the influence on the effective refractive index of the 
slab waveguide is negligible.
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case of a metallic grating, additional plasmonic resonances are 
introduced to the system. However, in this section only the case 
of purely dielectric perturbations is considered.

At first, let us consider the situation without any periodic 
corrugation. In this case the waveguide consists of three flat 
and homogenous layers. The corresponding optical eigen-
modes are obtained by solving the Helmholtz wave equations

∆E(r) + k2
0εE(r) = 0 (91)

∆H(r) + k2
0εH(r) = 0. (92)

A comparison with (18) shows that the substitution k0 = ω/c0 
was used. It can be shown that for the considered geometry 
there are two types of solutions [47]: transverse electric (TE) 
modes (with E = Eyey  , H = Hxex + Hzez) and transverse 
magnetic (TM) modes (with H = Hyey , E = Exex + Ezez). 
For the TE modes the following ansatz can be made:

Ey(x, z) = Aeazei(kxx−ωt) (superstrate) (93)

Ey(x, z) = (Beikzz + Ce−ikzz)ei(kxx−ωt) (WG slab)
 (94)

Ey(x, z) = De−bzei(kxx−ωt) (substrate) (95)

The ansatz for Hy in the case of TM modes (not shown here) is 
very similar. By applying the correct boundary conditions for 
the material interfaces, the following dispersion relation for 
TE modes is obtained [47, 74]:

h
√

k2
0εWG − k2

x

= arctan

[√
k2

0(εWG − εsuper)

k2
0εWG − k2

x
− 1

]

+ arctan

[√
k2

0(εWG − εsub)

k2
0εWG − k2

x
− 1

]
+ mπ.

 

(96)

For TM modes the dispersion relation is given by

h
√

k2
0εWG − k2

x

= arctan

[
εWG

εsuper

√
k2

0(εWG − εsuper)

k2
0εWG − k2

x
− 1

]

+ arctan

[
εWG

εsub

√
k2

0(εWG − εsub)

k2
0εWG − k2

x
− 1

]
+ mπ.

 

(97)

The equations  (96) and (97) are transcendental equations, 
which connect the frequency of the light ω = c0k0  with the 
propagation constant kx. The integer (m = 0, 1, 2, 3...) denotes 
the mode order. For εsuper �= εsub the dispersion relations only 
possess solutions for photon energies E = c0�k0 above the 
cut-off energy Ecut. These cut-off energies are

Ecut,TE =
�c0

h
√
εWG − εsub

×
[
arctan

(√
εsub − εsuper

εWG − εsub

)
+ mπ

] 

(98)

for TE modes and

Ecut,TM =
�c0

h
√
εWG − εsub

×
[
arctan

(
εsub

εsuper

√
εsub − εsuper

εWG − εsub

)
+ mπ

] 
(99)

for TM modes. Figure 15 displays an exemplary dispersion 
plot obtained by numerically solving the transcendental equa-
tions (96) and (97) for m  =  0. The assumed structure param-
eters are εWG = 3.61, εsuper = 1, and εsub = 2.1, as well as 
h  =  140 nm. The energies of the TE and TM waveguide modes 
are plotted with blue and orange solid lines, respectively. The 
corresponding cut-off energies are marked with dotted lines. 
The light cones of air, waveguide material, and substrate are 
drawn as black lines. From the plot it can be seen that the 
modes are always above the light cone of the waveguide mat-
erial. This means that for a given light frequency, the effective 
wavelength inside the waveguide slab is always longer than 
for an infinitely thick waveguide slab (i.e. bulk).

In order to realize the excitation of guided modes by inci-
dent light, the following three requirements have to be met: 
(1) The polarization of the incoming light has to match the 
polarization of the waveguide modes. This means that TE0 
and TM0 waveguide modes can only be excited by  s-polarized 
and p-polarized light respectively. (2) Energy conservation 
requires that the incoming light and the guided light have 
to have the same frequency ω. (3) Momentum conservation 
requires that the component of the incoming wave vector (see 
figure 14) matches the wavenumber inside the slab, i.e.

kx = k||in. (100)
The latter two conditions implicate that guided modes  cannot 
be excited by incident plane waves: looking at  figure 15 reveals 
that for a given light frequency (energy), the propagation 

Figure 15. Dispersion of guided modes in a 140 nm thick 
waveguide. The blue curve corresponds to the TE polarized 
mode, wheras the orange curve denotes the TM waveguide mode 
dispersion. The black lines mark the light cones of air, substrate and 
the waveguide material.

Rep. Prog. Phys. 81 (2018) 116401



Review

17

constant kx is always larger than the wavenumber of the 
light cones of air and the substrate. This means that even for 

incident light with k||in → |kin|, the equation  (100) cannot be 
fulfilled.

One way to overcome the problem of simultaneous energy 
and momentum conservation is by utilizing prism couplers 
[75, 76]. This technique employs a prism with a refractive 
index larger than that of the waveguide slab. This prism is 
brought in contact with the waveguide slab and light is sent 
through the prism such that it is reflected at the contact inter-
face. Due to photon tunneling, an evanescent wave is then 
leaking into the waveguide slab. The x component of this eva-
nescent wave can be matched with kx by adjusting the incident 
angle into the prism.

Another way of coupling the waveguide modes to external 
plane waves can be realized by introducing periodic perturba-
tions of the waveguide surface, e.g. by attaching a grating on 
top of the waveguide [47, 73]. In figure 14 such a perturba-
tion is indicated by the dark blue features. If this perturba-
tion is small and the change of the effective refractive index 
of the waveguide slab is negligible, the modal dispersion can 
be assumed to be the same as in the non-disturbed case, with 
the only difference that the range of kx can now be reduced 
to the first Brillouin zone (−π/p � kx � π/p) by treating 
every wavenumber kx to be equivalent to kx ± l 2π/p, with 
(l = 0, 1, 2, 3...) [47]. As a result, the condition (100) relaxes 
to

kx = k||in ± l
2π
p

, (l = 0, 1, 2, 3...). (101)

This means that the dispersion line is folded back at the bor-
ders of the first Brillouin zone (kx = ±π/p). This description 
is called empty lattice approximation [72]. Exemplary results 
of this approximation are displayed in figure 16. The two plots 
show the modal dispersion of the same slab waveguide as dis-
cussed in figure 15 but with an additional periodic perturba-
tion with p  =  300 nm and p  =  550 nm. For better readability, 
only the TE0 waveguide mode is plotted. The most notable 

feature of these plots is that as a consequence of the folding of 
the dispersion line, the TE modes now reach regions above the 
air and substrate light cones. In this region the corre sponding 
TE waveguide modes no longer possess an infinite lifetime 
and can couple to incoming and outgoing plane waves, i.e. 
the modes become quasiguided. Of special relevance for sec-
tion 4 are the points where the dispersion lines intersect with 

the line of kx  =  0. These points correspond to the case of nor-

mal incidence (k||in = 0 and l = ±1,±2, ...). For example, in 
the case of p  =  300 nm the first mode accessible for normal 
incidence has an energy of E1  =  2.5 eV. On the other hand, in 
the case of p  =  550 nm the first intersection with the energy 
axis already happens at lower energies such that also the sec-
ond intersection at E2 lies within the plotting range. At this 
point we note the important result that a larger grating period 
leads to a lower resonance frequency.

Both at the center (kx  =  0) and at the edge of the first 
Brillouin zone (kx = π/p) the modes are twofold degenerated 
due to the line folding. At these points the periodic structure 
supports two modes with the same energy, but with different 
symmetry of the electric field distribution with respect to the 
unit cell of the periodic waveguide. In the simplest case, one 
of the two modes shows a sinusoidal behavior with respect to 
the x direction, whereas the other one shows a cosinusoidal 
behavior. For normal incidence and systems with high sym-
metry, usually one of the two eigenmodes is dark, i.e. it pos-
sesses a line width of zero, and only the other mode can be 
excited efficiently. For an increasing incident angle, the line 
width of the dark mode increases and the mode becomes 
bright (see also section 4.3). Furthermore, when the periodic 
corrugation of the waveguide becomes stronger, the degen-
eracy of the eigenmodes at the center and the edges of the 
first Brillouin zone is lifted. This is in analogy to the case of 
electronic Bloch wavefunctions in solids [77] and is indicated 
by the magnified crop next to E1 in the right plot of figure 16.

The simple concept of the empty lattice approximation 
gives a good flavor of the nature of quasiguided modes in 
corrugated slab waveguides. However, in most real world 
grating-waveguide systems, the periodic corrugation cannot 
be treated as a small perturbation anymore. This is also the 
case for the structures investigated in sections  4–6. Hence, 
full numerical simulations are required to solve Maxwell’s 
equations in order to accurately predict the modal dispersion 
and the optical response of such systems. In section 4 we will 
see that especially the introduction of metallic wire gratings 
dramatically influences the waveguide dispersion. As the indi-
vidual grating wires provide an additional localized surface 
plasmon resonance, which can couple to the quasiguided 
waveguide modes, a new hybrid excitation emerges: the so-
called waveguide-plasmon-polariton.

3. State of the field

Over the last years the combination of plasmonic and di electric 
nanostructures with magneto-optics resulted in a multitude 
of different nanoscopic systems with intriguing functional-
ities ranging from enhanced nonreciprocal optical effects to 

Figure 16. Illustration of the empty lattice approximation for the 
TE0 waveguide mode in the slab waveguide structure corresponding 
to figure 15, but with an additional periodic perturbation.
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magn etically controlled optical devices. In this section  we 
provide an overview of magnetoplasmonics and nonreciprocal 
photonics by systematically grouping the major contributions 
to the field. To complement our discussion, we also want to 
make the reader aware of several excellent reviews that focus 
on different subfields in the realm of plasmonics and mag-
neto-optics [5, 7, 8, 78–85]. Parts of this section have been 
adapted with permission from the article [40].

3.1. Nonreciprocal photonics

The high demand for down-sized optical isolators stimulated 
a lot of research, which can be divided into two fields: on one 
hand people studied various ways to enhance the effective 
Verdet constant of conventional materials. Here, the utiliza-
tion of plasmonic nanostructures has proven to be a very pow-
erful method as it will be shown in the subsequent sections. 
On the other hand, there have been realized several nonrecip-
rocal optical systems which do not directly rely on Faraday 
rotation. These approaches are quite diverse but can be classi-
fied with respect to how Lorentz reciprocity is broken.

One way of breaking Lorentz reciprocity is through nonlin-
ear optical effects [7]. This approach is appealing as it allows 
for passive devices without any external magnetic bias. In 
particular, for future on-chip environments this aspect is very 
desirable. For example, much attention was received by the 
work of Fan et al in 2012. They realized a CMOS-compatible 
all-silicon optical isolator based on ring resonators with a size 
of 5 μm [14]. The working principle of their two-port device 
is depicted in figure 17. It relies on the following mechanism: 
the two ports (silicon waveguides) are coupled via evanescent 
fields to a nonlinear silicon ring resonator acting as add-drop 
filter (labeled ADF). Port I is coupled more weakly to the ring 
resonator than port II. Hence, the amount of energy stored 
in the ring resonator is different for forward and backward 
light propagation. As the ring resonator exhibits a strong Kerr 
nonlinearity, the resonance frequency and thus the frequency 
of highest transmittance of the system changes depending on 
the propagation direction. By suitably adding a second ring 
resonator acting as a notch filter (labeled NF) the overall 

system exhibits asymmetric transmission with a transmis-
sion ratio of 20 dB. The drawback of this approach is the 
rather large insertion losses in the order of 30–40 dB. This 
is also a very common problem among other nonlinear isola-
tors with high transmission ratios [86–88]. On the other hand, 
nonlinear isolators with low insertion losses often come with 
rather low transmission ratios [89–91]. However, in a recent 
theoretical study by Mahmoud et  al it has been suggested 
that nonlinear optical isolation could reach practical perfor-
mance data by utilizing metamaterials [92]. That being said, 
it has to be stressed that for all passive nonlinear isolators the 
difference of forward and backward transmittance depends 
on the light intensity and vanishes for small intensities. This 
property disqualifies nonlinear isolators for many applica-
tions. Furthermore, in a recent study by Shi et al it was dem-
onstrated analytically that any optical isolator based on Kerr 
nonlinearities (as for example presented in the works [14, 87, 
93–97]) cannot block a class of low intensity noise in the 
backward direction when a forward signal is transmitted [7]. 
They also suspect that this limitation could hold for a much 
broader range of nonlinear optical isolators.

Another way to break Lorentz reciprocity is spatiotempo-
ral modulation [8]. For example, by electrically [98–105] or 
mechanically [106–110] modulating the local optical proper-
ties of electromagnetic wave carrying structures nonreciprocal 
operation has been proposed theoretically [98–100, 109–111] 
and demonstrated experimentally [101–108]. However, while 
time modulated systems reached practical relevance within the 
microwave regime, optical realizations are often only theor-
etical or proof-of-concept realizations [8]. This is because 
such systems usually come with dramatic losses and it is very 
difficult to obtain robust modulation with high strength and 
speed simultaneously [8].

As discussed in the beginning, magnetic fields are the most 
common way to break Lorentz reciprocity. Besides isolators 
relying on the Faraday effect there have been demonstrations 
of nanophotonic isolators based on plasmonic crystals [112] 
as well as magneto-optic waveguides and ring resonators  
[13, 113–115]. Among these, the most prominent work is the 
one by Bi et al [13], where a monolithically integrated isolator 
with 19.5 dB isolation ratio at 1550 nm was experimentally 
demonstrated. The working principle of this system is based 
on the effect that the resonance frequency of a silicon ring 
resonator acting as notch filter depends on light circulation 
direction. However, as in the case of similar approaches [13, 
113–115] there is a dramatic trade-off between isolation ratio 
and insertion loss. In the case of Bi et al the insertion loss is in 
the order of 20 dB, attenuating the light intensity by a factor 
of 100.

Furthermore, Davoyan et al [116, 117] theoretically pro-
posed a 2D nanophotonic circulator with three ports. Such a 
nonreciprocal device routes light coming from one port into a 
specific port depending on the propagation direction. The core 
element connecting the three junctions consists of plasmonic 
nanorods embedded inside a magneto-optic bismuth-iron-
garnet host. While the fabrication of such a structure might 
be challenging, Davoyan et al demonstrated numerically that 
under ideal conditions the transmission through one of the 

Figure 17. Sketch of the optical isolator based on nonlinear silicon 
ring resonators as demonstrated by Fan et al. From [14]. Reprinted 
with permission from AAAS.
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output ports can reach up to 63%, while the transmission of 
the other (isolated) port is well below 3% [116].

Recently, Scheucher et  al demonstrated that a circulator 
can also be realized with a whispering gallery resonator and 
an attached single rubidium atom [118]. The researchers dem-
onstrated that depending on the quantum state of the atom the 
optical throughput of two tapered optical fibers attached to the 
resonator can be routed. The isolation ratios between pairs of 
the four ports have been demonstrated to be in the order of 
10 dB with an insertion loss of around 1.4 dB. Such quantum 
systems involving so-called chiral coupling have been stud-
ied extensively over the last years [119]. Recently, there have 
been findings in 2D materials that utilize excitons in MoS2 
for optical spin-orbit coupling and spin-momentum locking   
[120, 121]. These effects might lead also to compact nonrecip-
rocal devices in the future.

An interesting approach towards thin film Faraday isola-
tors is the ansatz by Christofi et al [122]. In their recent theor-
etical study, they utilize BIG nanodisks embedded in silica, 
which form high-index resonators for the telecom wavelength 
range. Through careful engineering, they are able produce a 
spectral overlap of the electric and magnetic dipole resonances 
(i.e. the fundamental and higher order Mie resonances). This 
way it is possible to achieve mostly forward scattering without 
reflection losses. Such a so-called Huygens metasurface ful-
fills the Kerker condition [123, 124]. In principle, by utilizing 
the analog to electromagnetically induced transparency, they 
can achieve a very high transmission above 90%. Depending 
on the quality factor of the resonance, Faraday rotations of 
up to 8◦ are possible for films of 260 nm thickness at room 
temper ature. To achieve the desired 45◦ rotation required for a 
Faraday isolator it might be necessary to stack multiple meta-
surfaces or to furhter optimize the quality factor. Furthermore, 
it would be interesting see how well experimental values match 
the theoretical predictions which neglegted absorption losses.

At this point we should also note that in addition to all the 
above mentioned nonreciprocal systems there have also been 
studies on reciprocal systems with asymmetric light trans-
mission [125]. Such systems mimic some behavior similar to 
optical isolators but with less restricted symmetry properties 
[48, 126–130]. However, we stress that optical isolators in the 
common sense need to break Lorentz reciprocity [5].

3.2. Magnetoplasmonic antennas

Now we come back to the concept of enhancing magneto-
optic (MO) effects of conventional materials by means of 
plasmonic nanostructures. The most straight-forward way 
to achieve this is to utilize magnetoplasmonic antennas, i.e. 
plasmonic nano-antennas which at least partially consist of 
MO materials. Here, the term antenna refers to any kind of 
metal nanostructure that provides a localized surface plasmon 
resonance (LSPR). Possible geometries range from colloidal 
metal nanoparticles [21] to more well defined systems as for 
example disks [32] or donuts [131]. It has been demonstrated 
both experimentally and theoretically that at the LSPR the 
MO response of magnetoplasmonic antennas is enhanced  

[30, 132]. The reason for this behavior is that at the plasmonic 
resonance not only the diagonal elements of the particle polar-
izability tensor are resonantly enhanced but also the off-diag-
onal elements [30, 132], which are the origin of MO activity 
(see section 2.2.2). For spherical MO particles this behavior 
can be described analytically via Mie theory [133, 134]. We 
note in passing that in addition to the resonant plasmonic 
enhancement there can also be non-resonant contributions to 
the MO enhancement, which are geometrically induced [135] 
but usually weaker than the resonant contributions.

While the first theoretical prediction of LSPR-enhanced 
MO response of plasmonic particles was made in 1987 [136] it 
was first observed experimentally over 10 years later in granu-
lar CoFe-HfO2 films [137] and in nickel nanowires embedded 
in alumina [138]. From there on the field of magnetoplasmon-
ics started to emerge. Fabrication techniques such as hole 
mask lithography and electron beam lithography allowed to 
study the MO response of geometrically more well defined 
magnetoplasmonic antennas such as nickel disks [139–141]. 
As a result, design rules have been derived regarding the disk 
shape [142] and lattice parameters [33] in order to obtain a 
tailored and optimized MO response.

While ferromagnetic metals such as cobalt, nickel and iron 
exhibit very strong MO response, they are also extremely 
lossy (see section  2.4). This leads to rather broad plasmon 
resonances in nanoparticles and thus weak MO enhancement. 
Furthermore, the plasmonic features in the optical spectra are 
not very well defined. The cleanest plasmon resonances can 
be obtained from noble metal particles such as gold and silver 
antennas. Although such nanostructures exhibit rather weak 
MO activity they have proven to be very useful model sys-
tems for in-depth studies on the connections between LSPRs 
and enhanced MO response. For example, they have been uti-
lized to confirm the accuracy of simple theoretical models for 
magnetoplasmonic antennas based on discrete dipole approx-
imation [30, 143] and harmonic oscillators [144].

In order to combine high quality plasmon resonances of 
noble metals with strong MO activity, there have been several 
intriguing approaches based on hybrid systems. Already very 
early works on colloidal systems involving both a noble metal 
and a ferromagnet suggested that the noble metal contrib-
ution to the LSPR resonance can lead to a significant MO 
enhancement [21, 146]. However, as in the case of purely 
ferromagnetic antennas, by means of lithographic fabrication 
techniques more control over antenna geometry and composi-
tion can be realized. For example, Gonzáles-Díaz et al demon-
strated that sandwiches of Co/Au/Co disks fabricated by hole 
mask lithography exhibit a resonantly enhanced MO Kerr 
effect around the plasmonic resonance [147]. Furthermore, 
this enhancement can be tailored and optimized by choos-
ing an appropriate thickness for the chromium and gold lay-
ers [31]. Most notably, Banthí et al [32] demonstrated that by 
including a dielectric layer inside a Au/Co/Au sandwich (see 
figure  18), the electric field distribution of the LSPR mode 
can be redistributed in such a way that an optimized tradeoff 
between light absorption and MO response can be achieved. 
This resulted in a Kerr rotation angle of over 0.3◦ associated 
with an extinction of below 0.1 [32].
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Interestingly, it is not strictly required that the MO mat-
erial is part of the resonant antenna itself. It is also possible 
to enhance the MO response of a continuous (non-resonant) 
metallic MO film by means of the near field of attached noble 
metal antennas [148–150]. Similarly, for dielectric MO films 
it has been demonstrated both theoretically [151] and exper-
imentally [152, 153] that by incorporating noble metal anten-
nas inside or on top of the surface of the MO film the Faraday 
effect can be enhanced significantly. Baryshev et al reported 
an enhancement of up to 10 times relative to a bare host [153]. 
However, such systems exhibit extremely low light transmit-
tance in the order of 1% for a 100 nm thick structure. This 
limits the applicability for photonic devices. To overcome this 
problem, it was also suggested to compensate for the optical 
losses by introducing gain by additional pumping [154].

The combination of noble metal antennas with continu-
ous MO films allowed to study several physically interest-
ing coupling effects. For example Torrado et al [149] studied 
magneto-optical effects of localized plasmon resonances inter-
acting with propagating ones resulting in strongly magnetic 
field dependent SPP dispersion (more discussion on this 
aspect is provided in section 3.3). Furthermore, Armelles et al 
[150] investigated the interplay between a continuous Au/Co 
mulilayer and a chiral plasmonic oligomer leading to an over-
lay of chirality induced natural circular dichroism (NCD) and 
magnetic-field induced circular dichroism (MCD). Similarly, 
in a very recent study Zubritskaya et  al [155] demonstraed 
a metasurface consisting of chiral arrangements of gold and 
nickel disks which provides magnetically tunable chiroptical 
response. In general magneto-optic and chiroptic effects can 
cross-couple and lead to so-called magnetochiral dichroism 
(MChD), as it was demonstrated by Eslami et al for nickel 

nano-spirals [156]. This phenomenon describes the situation 
when the effective permittivity tensor of an optical system 
exhibits a term proportional to both the wavevector and the 
magnetic field [156]. While the occurance of MChD is clearly 
very interesting its origin is not fully understood yet [157].

Although the antenna-enhanced MO response in the 
approaches above is very interesting from a fundamental 
standpoint, the application in miniaturized nonreciprocal 
devices, such as Faraday rotators is limited due to either high 
losses or still too weak MO effects. However, a recent study 
by Maccaferri et al brought up a novel application for mag-
netoplasmonic antennas, namely plasmonic sensing [145]. 
Conventional plasmonic sensors rely on tracing a shift of a 
plasmonic resonance of a nano-antenna resulting from a 
change of the surrounding refractive index [158] or due to gas 
exposure [69].

A typical figure of merit for such a sensing mechanism is 
the ratio of resonance shift for a given environmental change 
divided by the resonance linewidth in the absorbance spec-
trum [69]. This means that the resulting measurement acc-
uracy is often limited by the broad linewidth of plasmonic 
resonances. To obtain significantly increased sensitivity 
Maccaferri et  al [145] proposed to not monitor changes of 
the absorbance spectra but instead to leverage changes in the 
MO spectra. More precisely, they suggested to monitor the 
polarization ellipticity variation ∆ε of the light transmitted 
by an ensemble of Ni metal disks. An AFM image of such an 
enseble is depicted in figure 19(a). Figure 19(b) shows a com-
parison of the extinction spectra (top panel) and the spectra of 
the quanti ty 1/|∆ε| (bottom panel) for different surrounding 
refractive indices. The blue, magenta, green and red curves 
correspond to air (n  =  1), water (n  =  1.33), 50% Vol. glycerol 
(n  =  1.41), and glycerol (n  =  1.47) respectively. Maccaferri 
and coworkers concluded that the sharp features in the 1/|∆ε| 
spectra indeed result in a real sensitivity advantage when com-
pared to absorbance based measurements. As such, magneto-
plasmonic antennas could form the basis of highly sensitive 
label-free biosensors.

3.3. Propagating surface-plasmon-polaritons  
in a magneto-optic environment

Besides localized surface plasmon resonances also propagat-
ing surface plasmon polaritons (SPP) can exhibit interesting 
behavior in an magneto-optically active environment. Studies 
of such systems can be divided into two groups: one one hand 
it has been investigated how the dispersion behavior of SPPs 
can be controlled via magnetic fields. The second group of 
studies concentrated on systems with SPP-enhanced MO 
effects. In the following, we will give a brief overview of both 
groups.

SPP are propagating electromagnetic waves at 
 metal-dielectic interfaces (see section 2.5.2). They are widely 
regarded as a key mechanism for future on-chip optical devices 
as they allow to guide light through deep sub-wavelength 
structures [160, 161]. To obtain such devices with high func-
tionality it is important to have the ability to manipulate and 
switch the SPP propagation at high frequencies. Conventional 

Figure 18. (a) Sketch of the composition of the fabricated 
nanodisks by Banthí et al (b) AFM image of a selected fabricated 
structure (15 nm Au/10 nm Co/20 nm SiO2/15 nm Au). Adapted 
from [32] John Wiley & Sons. Copyright © 2012 WILEY-VCH 
Verlag GmbH & Co. KGaA, Weinheim.
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SPP modulation techniques relied on the refractive index tun-
ing of an active dielectric layer attached to the metal film. 
However, these approaches either enabled only weak modula-
tion or slow response times [162]. A much more effective way 
of controlling SPP waves in future photonic devices could be 
magneto-optic systems. The reason is that the wavevector βM 
of a SPP at the surface of a magneto-optically active metal can 
be modulated via the metal’s magnetization M. This can be 
expressed by the relation

βM = β +∆β(M), (102)

where β is the SPP wavevector in equation  (80) for zero 
magnetization of the metal and ∆β  is the magneto-optically 
induced perturbation [81]. Depending on the direction of M 
relative to the surface and to the wavevector of the SPP, ∆β  
is either linear or quadratic in M. A comprehensive over-
view of the different scenarios can be found in the work 
by Armelles and coworkers [81]. While purely ferromagn-
etic systems provide the strongest magnetic modulation of 
SPP waves they also exhibit large ohmic losses. For that 
reason, similar to the case of magnetoplasmonic antennas, 
there have been efforts to combine long SPP propagation 
distances of noble metals with the strong MO response of 
ferromagnets. Most notably, in 2010 Temnov and cowork-
ers [159] reported magnetically modulated SPP waves in 
Au/Co/Au films as illustrated in  figure  20. They achieved 
a relative modulation of the SPP wavevector in the order of 
10−4 for relatively low applied magnetic field strenghts of 
20 mT enabling potentially high modulation frequencies in 
the gigahertz regime [162]. In later follow-up work it was 

demonstrated that the sensitivity of the SPP dispersion can 
be further enhanced by an additional dielectric layer [163] 
and strongly modified by adding resonant plasmonic anten-
nas [149].

Instead of controlling SPP waves magneto-optically, the 
opposite mechanism, namely utilizing SPP waves to influ-
ence MO effects, is also feasible. As already explained in sec-
tion 2.5.2 the excitation of SPP waves by incident plane waves 
usually requires special momentum matching techniques. For 
the first experimental investigations of SPP enhanced MO 
effects prism couplers were utilized to launch SPP waves on 
purely ferromagnetic films [164] and later on Co/Au/Co mul-
tilayer films [165]. In these works it has been demonstrated 
that the SPP excitation results in enhanced MO Kerr effect in 
reflection geometry [164, 165]. Stimulated by these results, in 
the following years numerous studies have been conducted on 
optimizing different variations of such geometries [166–170]. 
It turned out that especially in the case when the magnetiza-
tion of the film is in plane and perpendicular to the SPP wave 
vector, the increased MO response can be attributed to the 
magnetic modulation of the SPP wave vector discussed in the 
last paragraph [81].

In contrast to continuous films, periodically corru-
gated systems allow the excitation of SPP resonances and 
enhanced MO response without a prism coupler [171–177]. 
This aspect makes such systems much more suitable for the 
integration in an ultra-compact environment. In this category 
of magnetoplasmonic systems, especially plasmonic crystals 
employing the concept of extraordinary transmission [160] 
added strong momentum to the whole field. For example, in 

Figure 19. (a) AFM profile of Ni magnetoplasmonic nanoantennas on glass. (b) Extinction spectra (top panel) and 1/|∆ε| spectra 
(bottom panel) for different values of the surrounding refractive index. Adapted with permission from Macmillan Publishers Ltd: Nature 
Communications [145], Copyright (2015).
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2007 a lot attention was received by the theoretical work by 
Belotelov and coworkers [63]. They demonstrated by means 
of rigorous coupled-wave analysis that attaching a 2D gold 
fishnet structure on top of a dielectric MO active BIG thin 
film can result in both large Faraday rotation (up to 0.78◦ for 
a thickness of less than 200 nm) and also high light transmis-
sion of 35% in the near infrared. Responsible for these excep-
tional performance data is the interaction of quasi-guided 
waveguide modes (see section 2.6) inside the BIG film with 
SPP waves in the plasmonic grating [63]. Subsequently, 
similar theoretical studies were performed on enhanced 
MO Kerr effect in 1D systems [178, 179]. While so far the 
particular two-dimensional system from 2007 has not been 
realized experimentally, in 2011 Belotelov and coworkers 
demonstrated the exper imental realization [62] of the one-
dimensional approach. A sketch of the utilized geometry is 
depicted in figure 21(a). They investigated the enhancement 
of the TMOKE signal of a dielectric BIG film when a 1D 
corrugated gold film is deposited on top. As most ferromag-
nets exhibit strong optical losses TMOKE is usually charac-
terized in reflection geometry (see section 2.2.4). However 
the high transparency of BIG allowed them to measure in 
transmission geometry where the TMOKE parameter δT  is 
defined as relative difference in transmittance for opposite 
magnetization directions:

δT = [T(M)− T(−M)] /T(0). (103)

Belotelov et al estimated the TMOKE signal of the bare BIG 
film to be δT ≈ 10−5 and found that by covering the film with 

Figure 20. Illustration of the SPP modulation technique by Temnov et al. A slit-groove pair is milled in a Au/Co/Au multilayer film using 
a focused ion beam. Surface plasmons are launched by the groove, propagate towards the slit, and interfere with the directly transmitted 
light to produce a periodic interference pattern along the slit axes. The oscillating magnetic field of an electromagnet is used to periodically 
switch the magnetization in the thin cobalt layer and thus modify the wave vector of surface plasmons. An imaging nano-optical set-up 
is used to record the magneto-plasmonic modulation signal. Adapted with permission from Macmillan Publishers Ltd: Nature Photonics 
[159], Copyright (2010).

Figure 21. (a) Sketch of the magnetoplasmonic crystal for 
enhanced TMOKE. (b) Measured transmittance and TMOKE 
parameter δT for an incident angle of 15◦. Adapted with permission 
from Macmillan Publishers Ltd: Nature Nanotechnology [62], 
Copyright (2011).
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a continuous gold layer the TMOKE signal is increased up to 
δT ≈ 10−3 through the excitation of SPP waves. Most inter-
estingly, their measurement results showed (see figure 21(b)) 
that by introducing 1D slits into the gold film extraordinary 
optical transmission can be realized which further boosts the 
TMOKE signal up to δT = 1.5 × 10−2 for an incident angle 
of 15◦. Moreover, in 2013 it was demonstrated for a similar 
geometry that a longitudinal magnetic field can increase the 
transmittance from 0.04 in the non-magnetized case by up to 
24% [180].

These results raised the expectations for future plasmoni-
cally driven MO devices. However, being a surface effect, 
even the plasmonically enhanced TMOKE is still too weak 
for the most demanding magneto-optical devices such as iso-
lators. As a result, there have been several efforts to enhance 
the potentially strongest MO effect, namely the Faraday effect 
[36, 40–42]. Although the investigated geometries in these 
works might seem quite similar to the ones utilized in the 
works discussed above, they rely on localized surface plasmon 
resonances rather than on propagating SPP waves. Hence, 
they are discussed separately in the following section  3.4. 
Furthermore, the sections 4–6 provide in-depth discussions of 
some recent studies that led to the strongest Faraday rotation 
in thin film geometries so far.

3.4. Waveguide-plasmon-polaritons

Through the discussions in the preceeding sections, we have 
identified three main ingredients to realize a good trade-off 
between strong MO response and low light absorption in 
magnetoplasmonic systems: the first one is to utilize separate 

components responsible for strong MO activity and for pro-
nounced plasmonic resonances [31]. The second ingredient is 
to decrease the losses by concentrating light inside a transpar-
ent dielectric material [32]. The third aspect is to also leverage 
waveguide mode excitations inside the MO material [62, 63]. 
All these three aspects are employed in hybrid magnetoplas-
monic waveguides as introduced by Chin et al in 2013 [36]. 
Such systems consist of a dielectric MO waveguide with a 
thickness in the order of 150 nm and an attached noble metal 
wire grating on top (see figure  22). Unlike in the work by 
Belotelov et al [62, 63, 180] the noble metal grating is much 
less dense and does not support any propagating SPP waves. 
Instead, the gold grating has the following two main func-
tions: Firstly, it acts as a waveguide coupler to enable the exci-
tation of quasi-guided waveguide modes inside the MO film 
for normal incidence. Secondly, it provides a localized surface 
plasmon resonance that couples strongly to the TM-polarized 
high-Q waveguide mode inside the MO film leading to the 
formation of a so-called waveguide-plasmon-polariton 
(WPP). This quasi-particle was first studied in 2003 in a 
 non-magneto-optic context by Christ and coworkers [37, 38]. 
However, Chin et al discovered that the dispersion properties 
of a WPP also facilitate strong enhancement of Faraday rota-
tion [36]. In a simple picture this can be be understood in the 
following way: the high oscillator strength of the plasmonic 
wires enables coupling normally incident light efficiently into 
the system where it resonates inside the transparent MO film 
and accumulates Faraday rotation proportional to the Q-factor 
of the system. In the first realization by Chin et al a combina-
tion of a 150 nm thick BIG thin film with a 70 nm tick gold 
grating was utilized. It was demonstrated both experimentally 
and through numerical simulations that such sub-wavelength 
thick structures exhibit giant Faraday rotation of up to 0.8◦ 
and simultaneously high transmittance of 36% in the near-
infrared. Furthermore, in a follow-up study it has been dem-
onstrated that such waveguide-plasmon-polariton systems 
also show an extremely large TMOKE signal in transmission 
geometry of up to δT = 1.5 × 10−2 associated with a transmit-
tance of 45% [34]. While the TMOKE performance of such 
WPP systems is comparable to the geometry by Belotelov 
et al [62], the obtained Faraday rotation performance was set-
ting a new benchmark at that time.

Starting from there, in the following years there has been 
a series of works resulting in even thinner Faraday rotators 
with one order of magnitude larger rotation and more func-
tionality. As the performance of these nanoscopic structures 
is not far away from meeting the requirements of a Faraday 
isolator, the concept of hybrid magnetoplasmonic crystals 
could be a key to realize nonreciprocal photonic devices in an 
highly integrated environment. The first step in this direction 
will be discussed in section 4. There we will elaborate on how 
the hybrid magneto-plasmonic approach by Chin et  al has 
been employed and advanced [40] to 220 nm thick devices, 
which, at low temperatures, show five times greater polariza-
tion rotation than in previously reported experiments. In con-
trast to BIG, the utilized waveguide material EuSe provides 
a stronger magneto-optical response and also allows much 
simpler sample fabrication. This aspect is especially crucial 

Figure 22. (a) Faraday rotation by a magnetoplasmonic crystal for 
TM-polarized incident light. The Faraday rotation angle is indicated 
as φ. (b) Schematic of the magneto-optical photonic crystal. The 
BIG film (dark red) is deposited on a glass substrate (blue) and 
periodic gold nanowires (golden) are sitting atop. (c) Scanning 
electron microscopy image. Adapted with permission from 
Macmillan Publishers Ltd: Nature Communications [36], Copyright 
(2013).
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as it opens the way for creating a class of more sophisticated 
2D and 3D magnetoplasmonic metamaterials in the future. 
Furthermore, we discuss how the dispersion properties of such 
structures can be exploited to freely tailor the working wave-
length within the transparency window of the magneto-optical 
material. In addition, the aspect of active magnetic polariza-
tion tuning will be examined.

While the experimental realization and numerical simu-
lation of hybrid magnetoplasmonic systems received con-
siderable attention, until recently, an analytical theoretical 
description hast been missing. In section 5, a simple coupled 
oscillator model is presented, that reveals the underlying 
physics inside hybrid magnetoplasmonic systems and yields 
analytical expressions for the resonantly enhanced magneto-
optical response [41]. The Lorentz nonreciprocity of the oscil-
lator model is intrinsically incorporated via the Lorentz force, 
which is proportional to v × B. Moreover, the predictions of 
the model are in good agreement with rigorous numerical 
solutions of Maxwell’s equations  for typical sample geom-
etries. The demonstrated ansatz is transferable to other com-
plex and hybrid nanooptical systems and could significantly 
facilitate device design.

Usually, the maximal MO response of WPP systems is 
limited by the low Q factor of the plasmon resonances of the 
grating. This limitation is lifted elegantly by a novel approach 
[42] presented in section 6, which is based on a classical opti-
cal analog of electromagnetically induced absorption (EIA) 
[181, 182]. Here, a strongly damped plasmon oscillation is 
weakly coupled to a narrow linewidth waveguide resonance 
with a phase delay, leading to constructive interference. By 
tuning this coupling carefully, a high-Q absorptive hybrid 
mode is realized, which can be used to resonantly amplify the 
Faraday rotation response. Furthermore, the EIA mechanism 
allows to utilize the large oscillator strength of the plasmonic 
resonance, leading to an efficient coupling of the incident light 
into the structure without reducing the effective Q factor due 
to the broad plasmonic resonance as was the case in previous 
approaches [34, 36, 40]. Although less than 200 nm thick, at 
low temperatures, the novel EuS-Au structure design exhibits 
Faraday rotation of 14°. As this is only a factor of three away 
from the Faraday isolation requirement, the demonstrated 
concept could lead to highly integrated, nonreciprocal pho-
tonic devices for optical isolation, light modulation, and opti-
cal magnetic field sensing.

4. Giant Faraday effect in EuSe-Au structures

In this section, the realization of an ultra-thin plasmonic 
Faraday rotator for the visible wavelength regime will be 
demonstrated. The rotator is a magneto-plasmonic hybrid 
structure consisting of an EuSe slab and a 1D plasmonic 
gold grating. At low temperatures, EuSe possesses a large 
Verdet constant and exhibits Faraday rotation, which does not 
saturate over a regime of several Tesla. By combining these 
properties with plasmonic Faraday rotation enhancement, as 
introduced by Chin et  al [36], giant Faraday rotation of up 
to 4.2◦ for a film thickness of only 220 nm is achieved. This 

magneto-optic response is five times stronger than in previ-
ously reported experiments. Furthermore, by varying the 
magnetic field from  −5 to +5 T, the polarization of the trans-
mitted light can be continuously tuned over a range of 8.4◦. 
Through experiments and simulations, it will be demonstrated 
for the first time that the unique dispersion properties of such 
a Faraday rotator allow to tailor its working wavelength to 
arbitrary spectral positions within the transparency window 
of the magneto-optical slab. The demonstrated concept might 
lead to important, highly integrated, nonreciprocal, photonic 
devices for light modulation, optical isolation, and optical 
magnetic field sensing. Moreover, the simple fabrication of 
EuSe nanostructures by physical vapor deposition opens the 
way for many interesting magneto-plasmonic systems and 3D 
magneto-optical metamaterials. This section has been adapted 
with permission from the dissertation [43] and the article [40].

4.1. The waveguide-plasmon-polaritonic approach

From the discussion of the Faraday effect in section  2.2.3, 
we have seen that, in first approximation, the Faraday rota-
tion angle scales linearly with the applied magnetic field, the 
material specific Verdet constant and the material thickness. 
Hence, as the rotation capabilities of a magneto-optic mat-
erial is usually limited by a small Verdet constant, a thin-film 
rotator structure might seem contradictory. However, a strong 
Faraday effect and a low material thickness can be combined 
by making the rotator structure resonant. As it was also dis-
cussed in section 2.2.3, the Faraday effect is non-reciprocal, 
which allows light to accumulate rotation of the same sign 
and magnitude for both forward and backward propagation. 
This behavior implies that when light propagates through a 
medium and is reflected in the backward direction, the accu-
mulated Faraday rotation is twice the rotation of only one 
pass. Moreover, the rotation can be enhanced even further 
by additional round-trips through the medium. This principle 
is utilized in the magneto-plasmonic structure schematically 
depicted in figure 23(a). The structure consists of an EuSe slab 
waveguide and a gold wire grating on top. Both the magnetic 
field and the wave vector of the incident light are assumed be 
perpendicular to the EuSe film. In the following, the incident 
polarization parallel and perpendicular to the wires is referred 
to as TE and TM, respectively. The gold nanowire grating has 
two functions. First, it acts as a waveguide coupler and allows 
normally incident light to couple into the slab and excite a 
waveguide mode (see section 2.6). The wave vectors of these 
modes possess a significant component in the z-direction. In 
ray approximation, this scenario can be understood as light 
bouncing back and forth inside the magneto-optical film and 
accumulating the rotations of multiple round-trips. When light 
is eventually coupled out of the film, due to a finite lifetime, 
the effective Faraday rotation is significantly larger than that 
for a bare film.

Many applications require wavelength-specific device 
operation. The presented structure design provides the free-
dom to tune the working wavelength (i.e. the spectral region 
with largest rotation enhancement) to arbitrary positions 
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within the transparency window of the magneto-optical 
film. To explain the principle behind the wavelength tunabil-
ity, we must first consider the connection between Faraday 
rotation enhancement and the dispersion properties of the 
hybrid structure. The largest Faraday rotation enhancement 
occurs at wavelengths at which the structure supports both 
a TM-polarized and a TE-polarized eigenmode (see sec-
tion 2.6). In that case, the TM-to-TE conversion (i.e. polariza-
tion rotation) can occur most efficiently. This behavior will 
also be described analytically in section 5. Strictly speaking, 
the modes excited by TE- and TM-polarized incident light are 
themselves not purely (but mainly) TE- and TM-polarized due 
to the anisotropic permittivity tensor of the magneto-optical 
material. However, in the interest of readability, these modes 
are referred to as TE and TM modes, respectively. To overlap 
the TE and TM modes in k-space as well as at their energetic 
position, the second function of the metallic grating comes 
into play. In TM polarization, the gold wires provide a local-
ized particle plasmon resonance that hybridizes with the TM 
waveguide mode of the magneto-optical slab and forms a 
waveguide-plasmon-polariton (WPP) [38]. For the resulting 
TM-polarized WPP, there will always exist a grating period 

such that its dispersion curve intersects with a TE waveguide 
dispersion curve at the same wavelength. This mechanism is 
illustrated in figure 23(b), which schematically displays the 
dispersion behavior of the magneto-plasmonic hybrid struc-
ture. The lines in the diagram trace the resonance frequencies 
of the TE and TM modes for different grating periods. The 
solid lines correspond to the case when the grating coupler is 
made of a dielectric material and thus does not support any 
plasmonic resonance. As it was discussed in section 2.6, in the 
empty-lattice approximation, the waveguide resonance wave-
length increases with larger grating periods. Since the exciting 
light wave is assumed to be impinging normally, the solid lies 
in the dispersion diagram can be associated with the energy E1 
in figure 16. The dispersion for a metallic waveguide coupler 
is depicted as dotted lines. In the dielectric case, the TE and 
TM modes never overlap except for the zero grating period or 
inclined incidence [37], whereas they overlap in the metallic 
case owing to the formation of the WPP. As a result of the 
coupling of the localized particle plasmon to the TM wave-
guide mode, the dispersion curve of the TM mode is bent over 
the TE waveguide-mode dispersion curve and an intersection 
is created [37, 38]. The position of this intersection directly 
depends on the wavelength of the localized particle plasmon 
in the grating wires. By increasing (decreasing) the wire width 
of the grating, both the plasmonic resonance and intersection 
point of the WPP and TE mode shift toward longer (shorter) 
wavelengths and larger (smaller) periods. By means of this 
feature, the working wavelength of the system can be tuned 
via the gold wire width and grating period.

In the experimental realization of the hybrid-plasmonic 
structure, the waveguide was made of EuSe. Already in the 
1960s, in the context of research on computer memories, the 
group of Europium chalcogenides received attention for their 
exceptional magnetic properties and strong magneto-optical 
response at low temperatures [59, 183, 184]. In particular the 
compound EuSe exhibits extremely large Faraday rotation 
angles on the order of 1° per Tesla and micrometer thickness 
in the visible wavelength range at temperatures of 30 K. EuSe 
also possesses a high saturation magnetic flux density of 2–5 
T, depending on the wavelength [183–185]. Furthermore, the 
fabrication of EuSe thin films is very simple and can be carried 
out by physical vapor deposition [186] (PVD). This feature 
is a significant advantage over BIG, which is widely utilized 
both in magneto-optical devices [187–190] and concept stud-
ies [14, 36, 162]. BIG films are typically fabricated by pulsed 
laser deposition [60] (PLD) followed by high-temperature 
annealing, which is largely restricted to homogeneous films 
and does not allow for the direct incorporation of other mat-
erials, such as plasmonic nanostructures, into the film. With 
the flexibility of PVD, EuSe provides the possibility of fab-
ricating more sophisticated potential future designs, includ-
ing 3D geometries, where the magneto-optical and plasmonic 
elements are merged. The gold gratings attached to the EuSe 
films were fabricated by electron beam lithography [191].

To support the explanation of the Faraday rotation enhance-
ment mechanism, the dispersion behavior of the demonstrated 
structures was simulated using the scattering matrix method 
[192]. The simulation results displayed in figure 24 confirm 

Figure 23. (a) Geometry of the EuSe-Au hybrid structure. The 
applied magnetic field and incident light are normal to the EuSe 
film. There are two cardinal polarization orientations, namely 
transverse electric (TE, electric field parallel to the gold wires) and 
transverse magnetic (TM, electric field perpendicular to the gold 
wires). (b) Schematic dispersion graph of the hybrid structure. For 
TM incident polarization, the plasmonic resonance of the gold wires 
couples strongly to the TM waveguide mode of the EuSe slab and 
forms a waveguide-plasmon-polariton. Adapted from [40] with 
permission. © 2015 Macmillan Publishers Limited, part of Springer 
Nature.
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the formation of WPPs in the EuSe-Au hybrid structure for 
TM incidence and also show that the maximum Faraday 
rotation enhancement can be expected around the intersec-
tion of the TE waveguide mode and the TM-polarized WPP. 
The upper panels of figure 24 show the simulated absorbance 
spectra for a 150 nm thick EuSe film with a gold wire grat-
ing on top for varying the grating periods. The gold wires are 
assumed to be 70 nm thick and 70 nm wide. The black and 
white dashed lines trace the radiating TE- and TM-mode reso-
nance frequencies of the EuSe hybrid structure and have been 
derived ab initio from the scattering matrix [192]. The dif-
fraction induced Rayleigh anomaly [38] is plotted in red. For 
small periods, the TM hybrid-mode dispersion is dominated 
by the plasmonic resonance of the gold wires and is therefore 
relatively broad with a weak dependence on the grating period. 
For larger periods, the TM hybrid-mode dispersion becomes 
more waveguide-like and converges toward a sharp and purely 
waveguide-induced resonance. Because the localized particle 
plasmons in the gold wires can be excited only for TM-incident 
polarization, the TE-mode dispersion shows a distinct feature 
of a waveguide resonance. The corre sponding Faraday rota-
tion spectra are shown in the lower panels of figure 24. The 
maximum Faraday rotation occurs around the intersection of 
the TE and TM mode dispersion, as predicted in the previous 
discussion. For the case when the wave vector of the incident 
light is tilted, the dispersion behavior changes according to the 
analysis by Christ et al for non-magneto-optical hybrid struc-
tures [37, 38]. However, the criterion for maximum Faraday 
rotation enhancement remains unchanged: it occurs where the 
TM waveguide-plasmon-polariton has the strongest overlap 
with the TE waveguide modes. More discussion on that matter 

can be found in section 4.3, which will also elaborate on the 
influence of the waveguide thickness.

In the numerical simulations, the gold has been described 
by tabulated data by Johnson and Christy [193]. The glass sub-
strate was assumed to possess a constant relative permittivity 
of 2.13. The diagonal elements of the permittivity tensor of 
the EuSe film were modeled using experimental data gained 
from transmission measurements of different plasmonic grat-
ings on top of an EuSe slab. The off-diagonal elements of the 
dielectric tensor were obtained from measurements of a blank 
EuSe film at 30 K and 5 T, which is the condition given in the 
performed experiments.

4.2. Experimental realization

The Faraday rotation measurements for the EuSe-Au hybrid 
structures were performed in a magnet cryostat at 30 K. The 
polarization rotation was measured with a rotating analyzer 
between the illuminated sample and a spectrometer. Because 
the presented structures are anisotropic, for rotation measure-
ments it is crucial that the incident light be either purely TE- 
or TM-polarized. For other incident polarizations, undesired 
reciprocal rotation contributions occur owing to different trans-
mittance for TE and TM polarization. Wavelength-dependent 
deviations from the pure TE or TM polarizations can occur 
due to the Faraday rotation in glass elements within the reach 
of the magnetic field of the magnet cryostat. For this reason, 
an intra-cryostat polarizer was placed directly in front of the 
sample to ensure that the unpolarized measurement light beam 
is only polarized just before it hits the sample.

4.2.1. Faraday rotation enhancement. The simulated 
Faraday rotation of the EuSe-Au structures, presented in 
section  4.1, was subsequently confirmed experimentally. 
Figure  25(a) displays the transmittance and Faraday rota-
tion spectra for TM incidence for different grating periods. 
The utilized EuSe film is 150 nm thick. Both the width and 
thickness of the gold wires is 70 nm. The corresponding 

Figure 24. Simulation of absorbance and Faraday rotation for a 
150 nm thick EuSe slab and 70 nm thick and 70 nm wide periodic 
gold wires. The assumed conditions are a temperature of 30 K and 
a magnetic field of 5 T. The black and white dashed lines denote 
the calculated TE and TM resonance modes. At the point where 
TM and TE modes overlap, the largest Faraday rotation occurs. 
The red dashed line indicates the Rayleigh anomaly depending on 
the grating period. Adapted from [40] with permission. © 2015 
Macmillan Publishers Limited, part of Springer Nature.

Figure 25. Faraday rotation and transmittance spectra for a 150 nm 
thick EuSe slab and 70 nm thick and 70 nm wide periodic gold 
wires. By varying the grating period, the overlap of the TM and TE 
waveguide modes can be successively increased and the Faraday 
rotation enhanced. (a) Measured data. (b) Simulated data. Adapted 
from [40] with permission. © 2015 Macmillan Publishers Limited, 
part of Springer Nature.

Rep. Prog. Phys. 81 (2018) 116401



Review

27

spectra from the simulations are plotted in figure 25(b). The 
black curves represent the case of a blank EuSe film with-
out grating. The blue curves correspond to a 360 nm grating 
period and represent the case where the TE- and TM-mode 
dispersions have the greatest overlap. Hence, the largest 
Faraday rotation enhancement is achieved. At 662 nm, the 
structure exhibits a Faraday rotation of 4.2° at reasonably 
high transmittance of 30%. The other curves show that 
when the period is increased, the enhancement of the rota-
tion decreases as the TE and TM modes move farther apart. 
As in the color-coded absorbance diagram in figure  24, 
the resonance features of the TE mode (negative rotation 
contrib ution) and TM mode (positive rotation contribution) 
are drifting away from each other with an increasing grat-
ing period while simultaneously flattening out. The simu-
lated and exper imental data correspond well, although there 
is a difference in the Faraday rotation base line plotted in 
black. For small wavelengths, in the simulation, this curve 
completely overlaps with the colored rotation spectra of the 
different gratings. However, in the measurement this is not 
completely the case. This discrepancy is caused by the lim-
ited temperature accuracy of the utilized cryostat system. In 
principle, this effect can be completely eliminated by using 
a cryostat that can maintain a temper ature below 7 K, which 
is the Néel temperature of EuSe. Earlier measurements (not 
shown here) confirmed that in this temperature range, the 
Faraday rotation of EuSe is even larger and not temperature 
dependent.

4.2.2. Tunable working wavelength. As explained in sec-
tion 4.1, the Faraday rotation of the waveguide material can 
be enhanced at selected wavelengths. The only requirement 
is that the material offers a sufficiently low absorption at the 
wavelength of interest to achieve a high-quality factor of the 
waveguide resonator. From the visible to the near infrared, 
EuSe is transparent at wavelengths larger than 550 nm [194]. 
Figure  26 shows the measured Faraday rotation spectrum 
of a 150 nm thick EuSe film at a temperature of 30 K and 
a magnetic flux density of 5 T. The black curve denotes the 
Faraday rotation for the case without plasmonic enhance-
ment. By tailoring the plasmonic gratings such that the TE 

waveguide mode and TM WPP mode dispersions overlap at 
different wavelengths, the Faraday rotation can be enhanced 
selectively at these tailored wavelengths. As it was explained 
in section  4.1, for a given thickness of the magneto-optical 
slab, the TE-TM overlap can be achieved by tuning the wire 
width and period of the metal wires. The colored curves 
in figure  26 correspond to three different plasmonic grat-
ings, which fulfill the TE-TM-matching condition. All grat-
ings share a constant wire thickness of 70 nm. Both the wire 
width w = (70 nm, 80 nm, 90 nm) and the grating period 
p = (360 nm, 390 nm, 420 nm) are increasing from left to 
right. The resulting maximum absolute values of Faraday rota-
tion occur at the wavelengths λ = (662 nm, 695 nm, 736 nm). 
For longer wavelengths, both the intrinsic Faraday rotation of 
the film and the enhanced rotation are decreasing. This finding 
is in agreement with the assumption that the enhanced Fara-
day rotation and the intrinsic Faraday rotation of a film are 
approximately proportional to each other for constant absorp-
tion, a constant waveguide coupling efficiency, and thus a con-
stant quality factor.

4.2.3. Magnetically tunable polarization rotation. The magn-
etic field dependence of the Faraday rotation was measured to 
demonstrate the polarization tuning capability of the demon-
strated EuSe-Au structures. Figure 27(a) shows the Faraday 
rotation of the structure with a 360 nm grating period, 70 nm 
wire thickness, and 70 nm wire width for TM incidence. The 
magnetic field was varied from -5 T to  +5 T. The structure 
geometry yields largest Faraday rotation at 663 nm. For this 
wavelength, a polarization rotation tuning range from −4.2◦ 
to +4.2◦ is obtained. The tuning behavior is nearly linear in 
the magnetic field, as can be extracted from figure 27(b). The 
polarization rotation measurement for inverted magnetic fields 
also acts as a control experiment to reveal potential spurious 
non-magnetically induced contributions. Since the measured 
samples are anisotropic, such effects can occur when the inci-
dent polarization deviates from an exactly TE or TM polarized 
state, for instance, as a result of the Faraday rotation of the 
cryostat windows. The highly mirror symmetric behavior of 
the measured rotation spectra in figure  27(a) clearly shows 
that polarization errors of the incident light are well under 
control.

Figure 26. Experimental demonstration of sweeping the Faraday 
rotation enhancement over a range of wavelengths. The graph is 
showing the Faraday rotation of a 150 nm thick EuSe slab and 70 nm 
thick periodic gold wires. From left to right, the curves correspond  
to a wire width w of (70 nm, 80 nm, 90 nm) and a grating period p  
of (360 nm, 390 nm, 420 nm). Adapted from [40] with permission.  
© 2015 Macmillan Publishers Limited, part of Springer Nature.

Figure 27. Magnetic tuning of the polarization rotation. (a) Faraday 
rotation of a 150 nm thick EuSe slab and 70 nm thick and 70 nm 
wide periodic gold wires for different applied magnetic fields. 
(b) Magnetic field dependence of the Faraday rotation at 663 nm. 
Adapted from [40] with permission. © 2015 Macmillan Publishers 
Limited, part of Springer Nature.
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4.3. On the incident angle and film thickness

The simulations and measurements presented in the sections 4.1 
and 4.2 were performed for normal incidence. Here, the case 
of tilted incidence will be discussed by means of numerical 
simulations. As in the previous sections, the hybrid structure 
is assumed to consist of a 150 nm thick EuSe slab with 70 nm 
thick and wide gold wires on top. Furthermore, also a magnetic 
Field of 5 T and a temperature of 30 K are assumed.

The optical path length through a magneto-optical film can 
be increased by tilting the incident beam. However, the Faraday 
rotation is proportional to the component of the optical path 
in the direction of the magnetization of the material, which 
is perpendicular to the EuSe film. Therefore, a small tilting 
angle does not affect the polarization rotation in a bare film. 
However, a different behavior is exhibited by the presented 
magnetoplasmonic hybrid structures. Their WPP dispersion, 
and thus, also the Faraday rotation response critically depends 
on the incident angle. This is illustrated by the absorbance 
plots in figure 28 for both TM and TE polarized incident light, 
as well as for different angles of the wavevector in the plane 
perpendicular to the gold wires. It can be clearly seen that 
for an increasing tilting angle, there emerges a second reso-
nance feature both for TM and TE incidence. This is in agree-
ment with the analysis of non-magneto-optic WPP systems 
by Christ et  al [37, 38], showing that for normal incidence 
there are two TE and TM polarized waveguide modes with 
similar frequency, where one of them is symmetry-forbidden 

and thus possesses zero line-width. However, by deviating 
from normal incidence the dark waveguide modes become 
bright. Furthermore, with an increasing tilting angle, the two 
resonances move further away from each other. In the empty 
lattice picture, illustrated in figure 16 for the TE modes, this 
behavior can be understood in the following way: for normal 
incidence (kx  =  0) the two branches of the TE mode overlap 
at energy E1. This degeneracy is lifted when the tilting angle 
is increased (kx  >  0).

Comparing the modal dispersion in figure  28 with the 
corre sponding Faraday rotation plots in figure 29 reveals that, 
regardless of the more complex spectra for tilted incidence, 
the criterion for maximum Faraday rotation enhancement is 
still the same. It occurs where the TM WPP has the strongest 
overlap with the TE waveguide modes.

It is also interesting to investigate the influence of the 
thickness of the magneto-optical EuSe slab. Since the Faraday 
rotation of a bulk piece of material scales with its thickness, 
it might seem reasonable that a thicker EuSe film also leads 
to larger Faraday rotation. However, this is not generally the 
case, especially when the grating period and the wire dimen-
sions are kept the same. To illustrate this, let us consider the 
dispersion diagram in figure 23(b): increasing the film thick-
ness induces a redshift of the waveguide modes, whereas the 
plasmonic resonance remains at the same spectral position (in 
first approximation). As a result, the TE-TM overlap region 
shifts to smaller periods. The consequence of this behavior is 
illustrated in figure  30, which shows the simulated Faraday 

Figure 28. Dispersion of the absorbance for different angles of 
incidence. Adapted from [40] with permission. © 2015 Macmillan 
Publishers Limited, part of Springer Nature.

Figure 29. Dispersion of the Faraday rotation for different 
angles of incidence. Adapted from [40] with permission. © 2015 
Macmillan Publishers Limited, part of Springer Nature.
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rotation dispersion spectra for different film thicknesses and 
different periods. The gold wires are assumed to be 70 nm 
thick and wide. The simulations confirm that the Faraday rota-
tion of the film alone (far away from the TE and TM modes) 
increases for thicker EuSe films. However, since the TE-TM-
overlap region is slightly shifted toward smaller periods, the 
Faraday rotation decreases for the listed periods. If desired, in 
principle, the shift of the TE-TM overlap could be compen-
sated by tuning the plasmonic resonance toward longer wave-
lengths, which can be achieved by increasing the wire width.

4.4. Conclusion

An actively tunable thin-film optical rotator with a variable 
working wavelength was demonstrated both in experiment 
and in simulation. This was achieved by combining a slab 
of EuSe, which possesses a large Verdet constant and high 
saturation magnetic flux density, with a gold nanowire grat-
ing. The wavelength range of largest Faraday rotation can 
be selected by choosing the correct combination of grating 
period and wire width. The magnitude of optical rotation can 
be magnetically tuned over a wide angular range. At 30 K 
for a 220 nm thick structure, a rotation tuning range of up to 
8.4◦ was obtained. For the present structure, this range can 
presumably be doubled when cooling down to temperatures 
below the Néel temperature of EuSe, which is 7 K.

The demonstrated concept can be expected to have 
 applications in highly integrated optics, demanding actively 
controlled optical modulation [195], magnetic field sensing 
[196, 197] and optical isolation [12–14, 16–18]. Furthermore, 
the presented structure geometry is suitable for large-area 

fabrication [198, 199], which makes it a promising design for 
non-reciprocal coatings of optical elements, such as lenses, 
with active external control at specific wavelengths. In addi-
tion, the direct attachment onto optical fiber ends [200–202] 
or onto laser diodes could yield devices with extremely small 
volumes for a highly integrated environment.

The working principle of the presented structures is not 
restricted to EuSe as a waveguide material. It can be directly 
transferred to other magneto-optical materials. The only 
requirement is that the magneto-optical material provides a 
transparency window near the wavelength region of inter-
est and a sufficiently high surface quality to ensure a high 
Q-factor. These requirements can be met by commonly used 
room temperature magneto-optical materials, such as BIG 
[60], YIG [60] or TGG [203]. For the low-temperature regime, 
there are also other chalcogenides, such as EuS [183], EuTe 
[184], EuO [204], which have similar magneto-optical proper-
ties as EuSe. The temperature at which these materials show 
the largest Faraday rotation can possibly be increased by dop-
ing with Gd. For example, doping EuO with Gd can raise the 
Curie temperature from 69 K to 135 K [57, 205]. EuSe and 
EuS combine large magneto-optical response, high saturation 
magnetic flux density, and simple thin-film fabrication via 
PVD. Thus, they are promising materials for further magneto-
plasmonic studies with structures that are not restricted to 
designs including strictly continuous magneto-optical films. 
For example, in section 6, EuS will be utilized for a less than 
200 nm thick structure design, that relies on an EuS thin film 
with an incorporated gold grating and produces Faraday rota-
tion of up to 14◦, corresponding to a tuning range of over 25◦.

5. Lorentz force model for magnetoplasmonics

It was shown recently that the Faraday rotation [36] and also 
the transverse magneto-optic Kerr effect [34] of a dielectric 
film can be enhanced considerably by attaching a resonant plas-
monic grating. As it is demonstrated in section 4, by varying the 
grating and nanowire geometry, the maximal polarization rota-
tion enhancement can be tuned to arbitrary spectral positions 
[40]. Such structures exhibit Faraday rotation of up to 4.2◦ for 
a thickness of 220 nm [40]. Hence, they are very relevant for 
future devices, such as thin-film Faraday rotators and isolators 
as their performance exceeds other approaches considerably.

While the experimental realization and numerical simula-
tion of such systems received considerable attention, so far, 
there has not been an analytical theoretical description. In this 
section, a simple coupled oscillator model will be presented, 
that reveals the underlying physics inside hybrid magneto-
plasmonic systems and yields analytical expressions for the 
resonantly enhanced magneto-optical response. The Lorentz 
nonreciprocity of the oscillator model is intrinsically incor-
porated via the Lorentz force, which is proportional to v × B. 
Moreover, the predictions of the model are in good agreement 
with rigorous numerical solutions of Maxwell’s equations for 
typical sample geometries. The demonstrated ansatz is trans-
ferable to other complex and hybrid nanooptical systems and 
will significantly facilitate device design.

Figure 30. Dispersion of the Faraday rotation for different EuSe 
film thicknesses. The incident light is TM polarized. Adapted from 
[40] with permission. © 2015 Macmillan Publishers Limited, part 
of Springer Nature.
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In section  5.1 the model will be introduced and applied 
to the EuSe-Au structures discussed in the previous section. 
Next, the model will be assessed by comparing its predictions 
to full numerical simulations based on Maxwell’s equations. 
In order to maintain good readability, some of the mathe-
matical details of the model are presented separately in the 
section 5.2.

This section  has been adapted with permission from the 
dissertation [43] and from the article [41], Copyright (2016) 
by the American Physical Society.

5.1. Application to EuSe-Au hybrid structures

The geometry of the investigated magneto-optical system is 
depicted in figure 31(a). It consists of a dielectric magneto-
optic (MO) thin film with an attached one-dimensional gold 
grating on top. The incident light is assumed to be linearly 
polarized and impinges on the sample along the z-direction. 
The polarization direction with electric field perpend icular 
(parallel) to the gold wires will be referred to as x- (y-) polar-
ized. Figure  31(b) depicts the corresponding mechanical 
analog of the optical system, where each relevant optical exci-
tation is represented by a mass suspended by a linear spring. 
The coupling between the different excitations is modeled by 
interconnecting springs. All masses are assumed to be charged 
and driven by the external light field. Due to its periodicity, 
the gold grating acts primarily as a waveguide coupler and 
allows for the far-field excitation of transverse electric (TE) 
and transverse magnetic (TM) polarized quasi-guided wave-
guide modes inside the MO film. In the absence of the magn-
etic field, the TE (TM) waveguide modes can only be excited 
by y- (x-) polarized incident light. Thus, the waveguide modes 
are modeled by one mass each, which is restricted to move 
only along the x- or y-direction.

The second purpose of the gold wires is to provide a local-
ized plasmon resonance, which can be excited by x-polarized 
light. This plasmonic resonance is taken into account by 
an oscillator moving in x-direction (labeled P). Due to the 
field overlap, the plasmonic resonance is coupled to the TM 

waveguide mode [37, 38]. The dielectric response of the MO 
material itself is modeled by the red mass, which can move 
within the xy-plane and is subjected to a Lorentz force [50] 
in the xy-plane due to a static magnetic field B oriented along 
z-direction.

The oscillator system in figure 31(b) possesses five degrees 
of freedom. Its motion is described by five coupled second 
order linear differential equations. While these equations can 
be solved exactly, it is impossible to derive closed expressions 
for its eigenmode frequencies. To simplify the model and 
allow for the analytical calculation of the eigenmode frequen-
cies, a series of proper approximations can be applied.

First of all, neglecting the dispersion effects by the MO 
material itself yields significant simplification. This is 
achieved by assuming the driving frequency to be far away 
from the MO oscillator resonance and the impact of the driving 
force on the MO oscillator (i.e. the associated coupling con-
stant) to be small, resulting in a reduced system of three cou-
pled second order equations. Furthermore, in a rotating wave 
approximation, which is valid when the driving frequency ω 
is close to the eigenfrequencies Ωj , ( j = TE, TM, P) of the 
individual oscillators, the second order equations are reduced 
to first order. The mathematical details of the model reduction 
are provided in section 5.2 and the limitations of the applied 
approximations are discussed later in this section.

The simplified oscillator scheme is depicted in fig-
ure 31(c). The three masses of the TE, TM and material oscil-
lator are now merged into one waveguide oscillator. Assuming 
a time-harmonic oscillator displacement that is proportional 
to exp(−iωt), the governing equations  in the rotating wave 
approximation are given by the matrix equation

(M0 +∆M − Iω)x = ηR E||, (104)

where I is the 3 × 3 identity matrix, and η is a residue of 
the rotating wave approximation that is inversely propor-
tional to the effective mass and the density of the oscillators  
(see section 5.2). The vector x = (xTM, xP, yTE)

T  contains the 
displacements of the corresponding oscillators in the xy-plane, 
while E|| = (Ex, Ey)

T denotes the driving electric field. The 
forces acting on each oscillator are proportional to R E||, with 
the charge density matrix

R =



ρTM 0
ρP 0
0 ρTE


 . (105)

Furthermore, M0 accounts for the coupling of the TM wave-
guide mode and the plasmon [37], with

M0 =



ωTM −κ 0
−κ ωP 0
0 0 ωTE


 . (106)

The corresponding coupling constant κ is assumed to be 
purely real, while ωj = Ωj − iΓj, ( j = TE, TM, P) are com-
plex frequencies that consist of the resonance frequencies Ωj  
and the damping coefficients Γj  (due to radiative and absorp-
tive losses) of the different modes. The antisymmetric matrix 

Figure 31. (a) Schematic drawing of the hybrid magnetoplasmonic 
nanostructure. (b) Mechanical analog that represents the coupling 
of the relevant optical excitations. (c) Simplified oscillator model 
providing analytical solutions. Adapted figure with permission from 
[41], Copyright (2016) by the American Physical Society.
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∆M  denotes the nonreciprocal influence of the magnetic field 
via the Lorentz force proportional to v × B and is defined as

∆M = βeiθ




0 0 −i
0 0 0
+i 0 0


 , (107)

with the real coupling coefficient β, that is proportional to the 
static magnetic field. The factor exp iθ stems from the four-
oscillator model and represents the phase of the MO oscil-
lator in that system. In the supplement of [41] it is shown by 
perturbation theory [206, 207] that this phase corresponds to 
the phase of the gyration g = |g| exp(iθ) of the MO material.

The optical response of the system is obtained by assign-
ing an effective susceptibility to the system. This is done by 
summing up the effective electronic polarization P|| = χE||, 
which can be identified as P|| = RTx. Hence, the effective sus-
ceptibility can be written as

χ(ω) = ηRTM(ω)−1R, (108)

with M(ω) = M0 +∆M − Iω. Due to the cross product in the 
Lorentz force, ∆M  and thus M(ω) become antisymmetric for 
non-zero magnetic fields, reflecting the nonreciprocity of the 
system [4, 48].

The eigenfrequencies of the coupled oscillator system are 
obtained by setting the external electric field in equation (104) 
to zero. This results in the following eigenvalue problem

(M0 +∆M)xn = ωnxn, (109)

where ωn denotes the eigenvalues, and xn the eigenvectors 
for n = 1, 2, 3. In the presented model, the Lorentz force is 
assumed to be weak compared to the restoring forces. Hence, 
∆M  is regarded as a small perturbation of M0, resulting in ωn 
being close to the eigenfrequencies of M0. The eigenfrequen-
cies of M0 are given by

ω1/2 =
ωTM + ωP

2
∓

√
κ2 +

(
ωTM − ωP

2

)2

, (110)

ω3 = ωTE. (111)

The first two eigenfrequencies correspond to the two branches 
of a WPP hybrid mode arising from the coupling between 
the plasmonic mode and the TM waveguide mode [37, 38]. 
The third eigenfrequency is simply the frequency of the TE 
polarized waveguide mode. In section 4, it was demonstrated 
numerically that the largest magneto-optical response occurs 
for grating periods at which the TE waveguide mode and one 
of the TM polarized WPP branches possess similar resonance 
frequencies, i.e. when ω1/2 = ωTE. This behavior can now be 
deduced analytically from the presented model by examining 
the inverse of M for a small perturbation ∆M :

M−1 ≈ (M−1
0 − Iω)− iβeiθ

(ω1 − ω)(ω2 − ω)(ωTE − ω)

×




0 0 +(ω − ωP)

0 0 −κ

−(ω − ωP) +κ 0


 .

 

(112)

This expression reveals that the magnetic terms proportional 
to β become largest for ω = ωTE = ω1/2, which confirms pre-
vious numerical findings.

To obtain the effective susceptibility for a particular 
nanostructure, the free parameters in M and R have to be 
deduced by a systematic and rigorous fitting procedure. 
The fitting process consists of three steps, in which M0, R, 
and ∆M  are fitted sequentially. Full numerical simulations 
based on the scattering matrix method [192, 208] were used 
as reference. In the following, the three fitting steps are dis-
cussed and applied to a sample geometry that consists of a 
150 nm thick EuSe film with 70 nm thick and 70 nm wide 
gold wires on top (see figure 31(a)). The substrate under the 
film is assumed to be glass with a permittivity ε = 2.13. The 
applied magnetic field is assumed to be 5 T. The permit-
tivity of the gold grating is modeled using the Drude model 
function ε(ω) = ε∞ − ω2

p/(ω
2 + iγω), which was intro-

duced in section 2.5.1. The model parameters for gold were 
extracted from [63] and set to ε∞ = 7.9, ωp = 8.77 eV, and 
γ = 1.13 × 1014 s−1. The components of the permittivity 
tensor

εEuSe =




ε11 ε12 ε13

−ε12 ε22 ε23

−ε13 −ε23 ε33


 (113)

of the magneto-optical slab are assumed to be ε11 = ε22 =  
4.95 + 0.007i, ε33 = 3.9643 + 0.0126i, ε12 = 0.061+  0.061i, 
and ε13 = ε23 = 0. These values correspond to a 150 nm thick 
EuSe thin film at a wavelength of 660 nm and a magnetic field 
of 5 T in z-direction. These data were obtained by previous 
magneto-optical measurements [40].

In the first step, the free parameters in M0 are fitted such 
that the eigenfrequencies of the mechanical system match 
the eigenfrequencies of the actual nanostructure obtained by 
rigorous numerical solutions of Maxwell’s equations. While 
equation (111) allows the direct derivation of ωTE, the com-
plex coefficients ωTM, ωP, and the real coefficient κ in equa-
tion (110) cannot be deduced directly from the full numerical 
simulations. This can be resolved by calculating the real part 
of ωTM from an empty lattice approximation [72] and assum-
ing ΓTM ≈ ΓTE/10, as justified by the results by Christ and 
coworkers [37, 38]. Figure 32 shows the comparison between 
the simulated and fitted eigenmodes of the oscillator model 
that includes the Lorentz force. The eigenmodes are plotted as 
blue (TM) and green (TE) dashed lines in units of wavelength. 
The solid black lines mark the edge of the light cone (i.e. the 
Rayleigh anomaly). The blue solid lines correspond to the fre-
quencies of the individual oscillators. Especially in the most 
relevant region around the intersection of the TE waveguide 
mode and WPP, the modal dispersion is reproduced very well 
by the oscillator model. Outside this region, in the simulated 
TM dispersion at around 530 nm, there is a discontinuity due 
to the presence of another spectrally close higher-order mode. 
As expected [209], the eigenmodes of the actual nanostructure 
exhibit a cut-off at the edge of the light cone (see also sec-
tion 2.6). Since the model does not take the periodic geometry 

Rep. Prog. Phys. 81 (2018) 116401



Review

32

into account, this discontinuity is missing in the dispersion 
plot of the model.

In the second part of the fitting sequence, the coefficients 
in R are derived by the condition that the transmittance of the 
effective medium has to reproduce that of the actual sample. 
In analogy to the first fitting step, it is assumed that the magn-
etic field only has weak influence on the absorption behavior. 
Hence, the absorption can be derived from the effective sus-
ceptibility for zero B-field. This is done by setting ∆M = 0 
and solving the Helmholtz equation  to obtain the evolution 
of an x- and y-polarized plane wave over an effective propa-
gation distance (see section 2.2.2). The effective propagation 
distance was assumed to be the sample thickness of 220 nm. 
For the sake of simplicity, the coefficients in R were assumed 
to be constant for all grating periods. By comparing the simu-
lated transmittance in figure 32 (left panels) and the modeled 
transmittance (right panels), it can be seen that, except for 
the discontinuities outside the region of interest, as discussed 
above, the line shapes agree very well.

In the last part of the fitting procedure, the remaining 
magneto-optical coefficients in ∆M  are determined. Far away 
from the MO material resonance, the gyration g = |g| exp(iθ) 
can be assumed to be constant. For bismuth iron garnet [36] 
and EuSe [40], this assumption is valid for the red and near-
IR spectral region, where θ ≈ −45 deg. This is also the value 
used for the oscillator model and the numerical simulations. 
Note that the model will work as well for other materials 
exhibiting different θ (see supplemental material in [41]). The 
last remaining fitting parameter is β, which is proportional to 
the magnetic field. For realistic magnetic field strengths, its 
value only influences the magnitude of the MO response but 
not its spectral line shape. Thus, β is scaled such that the MO 

response of the modeled system reaches the values of the full 
simulation.

Figure 33 depicts the comparison of the resulting Faraday rota-
tion spectra from the full numerical simulations and the oscilla-
tor model. The green and blue dotted lines trace the eigenmodes. 
As expected by examining equation (112), the MO response is 
largest around the intersection point of the TM polarized WPP 
and the TE waveguide mode. Furthermore, the qualitative and 
quantitative agreement between model and numerical simulation 
is excellent.

The corresponding dispersion of the ellipticity response is 
displayed in figure 34. It can be seen, that the ellipticity pre-
dicted by the model is also in good agreement with numerical 
simulation. As in the case of the Faraday rotation dispersion, 
it can be seen that the ellipticity response is strongest around 
the intersection region of the TE waveguide mode and the TM 
polarized waveguide-plasmon-polariton mode, and lowest far-
off resonance.

To compare the exact line shapes of the MO spectra, 
 figure 35 displays the corresponding slice cuts of the Faraday 
rotation and ellipticity spectra. The model reproduces the line 
shapes very well. This includes the characteristic up-down 
feature in the Faraday rotation for x-polarization (indicated 
by arrows), which is successively spreading for periods larger 
than the period of the TE-WPP intersection (green line) as it 
was also described in section 4. On the other hand, the mod-
eled MO spectra do not reproduce the offset in the numer-
ically simulated spectra. This is a result of the approximations 
required for the reduction of the four-oscillators-model to the 
two-oscillators model. There, the oscillator strength of the MO 
material was assumed to be much smaller than the oscillator 
strength of the waveguide modes and the plasmon. As a result, 

Figure 32. Comparison between transmittance spectra and modal 
dispersion derived from numerical simulations (left panels) and the 
Lorentz force oscillator model (right panels). TM (TE) polarized 
modes are plotted as blue (green) dashed lines. Blue solid lines 
indicate the uncoupled plasmon and TM waveguide frequencies. 
Adapted figure with permission from [41], Copyright (2016) by the 
American Physical Society.

Figure 33. Comparison of the Faraday rotation derived from 
numerical simulations (left panels) and the Lorentz force oscillator 
model (right panels). The eigenfrequencies corresponding to 
the upper TM polarized waveguide plasmon polariton (WPP) 
branch and the TE waveguide mode are drawn as dashed lines. 
Adapted figure with permission from [41], Copyright (2016) by the 
American Physical Society.

Rep. Prog. Phys. 81 (2018) 116401



Review

33

only the resonant contributions to the MO response are taken 
into account. The slightly broader MO features result from 
fitting the resonance linewidths to the values from numer-
ical simulations. A better qualitative agreement in Faraday 
rotation could be obtained when adjusting the losses in the 
model independently of the calculated resonance line widths. 
In summary, it is evident that even the simplified oscillator 
model correctly predicts the overall shape of the MO spectra 
very well.

5.2. Simplifications and approximations

In this section, the equation of motion (104) of the simplified 
oscillator model will be derived explicitly. The discussion will 
start from the equations of motions of the extended oscillator 
model with five degrees of freedom (figure 31(b)) described 
by five coupled second order linear differential equations. By 
applying appropriate simplifications the system of five equa-
tions  can be reduced to three coupled quadratic equations, 
which describe the motion of effectively three oscillators. 
Furthermore, in order to obtain an analytical solution of the 
three-oscillator problem, a rotating wave approximation will 
be applied.

5.2.1. Extended model (5 degrees of freedom). For light 
propagating in z direction (Ez  =  0), the equations of motion 
for the four-oscillators model in figure 31(b) are given by

XMO − kMO,TMxTM − kmẏMO =
qMO

m
Exe−iwt

 
(114a)

YMO − kMO,TEyTE + kmẋMO =
qMO

m
Eye−iwt

 
(114b)

XTM − kMO,TMxMO − kP,TMxP =
qTM

m
Exe−iwt

 
(114c)

YTE − kMO,TEyMO =
qTE

m
Exe−iwt

 
(114d)

XP − kP,TMxTM =
qP

m
Exe−iwt,

 
(114e)

where the lower case variables xj and yj with 
( j = MO, P, TE, TM) denote the displacements of the 
oscillators associated with the magneto-optical (MO) mat-
erial, the plasmon mode (P), as well as the TE and TM wave-
guide modes in x and y direction. The upper case symbols Xj 
and Yj denote terms of the form

Xj = ẍj +Ω2
j xj + 2Γjẋj (115a)

Yj = ÿj +Ω2
j yj + 2Γjẏj (115b)

Figure 34. Comparison of the ellipticity derived from numerical 
simulations (left panels) and the Lorentz force oscillator model 
(right panels). The eigenfrequencies corresponding to the upper TM 
polarized waveguide plasmon polariton (WPP) branch and the TE 
waveguide mode are drawn as dashed lines. Adapted figure with 
permission from [41], Copyright (2016) by the American Physical 
Society.

Figure 35. Comparision of the Faraday rotation derived from 
numerical simulations (left panels) and the Lorentz force oscillator 
model (right panels). The spectra correspond to slice cuts from 
figure 33 at equidistant periods from 250 nm to 430 nm with 30 nm 
spacing. Adapted figure with permission from [41], Copyright 
(2016) by the American Physical Society.
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with ( j = MO, P, TE, TM). Dots indicate a time derivative. 
The coefficient km is proportional to the magnetic field. Due to 
the cross product in the Lorentz force ∝(v × B), it occurs in 
the first two equations with opposite signs. In order to reduce 
the number of parameters in the model, the oscillator masses 
m are assumed to be equal for all oscillators. The time har-
monic ansatz exp(−iωt) for the displacements leads to

WMO(ω)xMO − kMO,TMxTM + iωkmyMO =
qMO

m
Ex (116a)

WMO(ω)yMO − kMO,TEyTE − iωkmxMO =
qMO

m
Ey (116b)

WTM(ω)xTM − kMO,TMxMO − kP,TMxP =
qTM

m
Ex (116c)

WTE(ω)yTE − kMO,TEyMO =
qTE

m
Ey (116d)

WP(ω)xP − kP,TMxTM =
qP

m
Ex, (116e)

where Wj(ω) = −ω2 +Ω2
j − 2iΓjω, ( j = MO, TM, TE, P). In 

matrix form, equation (116e) reads

M(ω) x =
1
m

Q E||. (117)

Here, we introduced the vectors x = (xMO, yMO, xTM, yTE, xP)
T 

as well as E|| = (Ex, Ey)
T and the matrices

M(ω)

=




WMO(ω) +iωkm −kMO,TM 0 0
−iωkm WMO(ω) 0 −kMO,TE 0
−kMO,TM 0 WTM(ω) 0 −kP,TM

0 −kMO,TE 0 WTE(ω) 0
0 0 −kP,TM 0 WP(ω)




 (118)
and

Q =




qMO 0
0 qMO

qTM 0
0 qTE

qP 0




. (119)

The optical response of the system is obtained by assign-
ing an effective susceptibility to the system. This is done by 
summing up the effective electronic polarization P|| = χE||, 
which is given by P|| = nQTx, where n denotes the effective 
oscillator density. Hence, the effective susceptibility can be 
written as

χ(ω) =
n
m

QTM(ω)−1Q. (120)

5.2.2. Identifying the gyration of the waveguide. The fol-
lowing auxiliary calculation will establish a relation between 
the gyration of the MO film and the model parameters. The 
special case of a bare magneto-optical slab is described by 

equations  (116a) and (116b) for kMO,TM = kMO,TE = 0. In 
analogy to equation (117), the corresponding matrix form is
[

WMO(ω) +iωkm

−iωkm WMO(ω)

](
xMO

yMO

)
=

qMO

m

(
Ex

Ey

)
. (121)

For small km, i.e. for small magnetic fields, the resulting sus-
ceptibility is then given by

χ(ω) =
n q2

MO

m WMO(ω)

(
1 −ikmω

WMO(ω)
+ikmω

WMO(ω) 1

)
. (122)

As discussed in section 2.2.2, for light propagating in z direc-
tion, the susceptibility tensor χ = ε− I  of a MO material can 
be written as

χ =

(
χxx +ig
−ig χyy

)
, (123)

where g is the complex magnetic field induced gyration of the 
material. By comparing the equations (122) and (123) g can 
be identified to be

g = |g|eiθ = − nωkmq2
MO

mWMO(ω)2 . (124)

5.2.3. Simplified model (3 degrees of freedom). Solving 
equations  (116a) and (116b) for xMO and yMO yields in the 
limit of a small magnetic influence (i.e. km � WMO)

xMO =+
1

WMO(ω)
(m−1qMOEx − kMO,TMxTM)

− ikm
ω

WMO(ω)2 (m
−1qMOEy − kMO,TEyTE)

 
(125)

yMO =+
1

WMO(ω)
(m−1qMOEy − kMO,TEyTE)

+ ikm
ω

WMO(ω)2 (m
−1qMOEx − kMO,TMxTM).

 
(126)

The equations (125) and (126) can now be inserted into the 
equations (116c) and (116d) to eliminate xMO and yMO. It is rea-
sonable to assume that the MO oscillator couples only weakly 
to the far field and that the system is mainly driven via the wave-
guide and the plasmon oscillators. This means that the driving 
forces of the MO oscillator are assumed to be much weaker 
than the internal coupling forces (|m−1qMOEx| � |kMO,TMxTM| 
and |m−1qMOEy| � |kMO,TEyTE|). In this limit and by using the 
equation (124), the equations (116c) and (116d) can be rewrit-
ten as

(−ω2 +Ω2
TM − 2iΓTMω −

k2
MO,TM

WMO(ω)
)xTM

− ig
mkMO,TMkMO,TE

nq2
MO

yTE − kP,TMxP = m−1qTMEx

 

(127)

(−ω2 +Ω2
TE − 2iΓTEω −

k2
MO,TE

WMO(ω)
)yTE

+ ig
mkMO,TMkMO,TE

nq2
MO

xTM = m−1qTEEy.
 

(128)
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Together with (116e), these two equations fully describe the 
optical system. Hence, the applied approximations led to a 
reduction to only three equations. Usually, the material reso-
nance of the MO slab is far away from the excitation frequency 
and the waveguide frequencies (i.e. ΩMO � ΩTM,ΩTE,ω), 
which means that the terms proportional to 1/WMO(ω) can be 
neglected. This results in the following set of equations:

(−ω2 +Ω2
TM − 2iΓTMω)xTM

− ibeiθyTE − kP,TMxP = m−1qTMEx
 

(129a)

(−ω2 +Ω2
TE − 2iΓTEω)yTE

+ ibeiθxTM = m−1qTEEy
 (129b)

(−ω2 +Ω2
P − 2iΓPω)xP  (129c)

−kP,TMxTM = m−1qPEx, (129d)

where b = |g|mkMO,TMkMO,TE/nq2
MO and θ = arg(g). For 

an absent driving electrical field, i.e. for E|| = 0, the equa-
tions above represent a quadratic eigenvalue problem for the 
eigenfrequencies ω. Obtaining these eigenfrequencies would 
therefore require to find the roots of a polynomial with degree 
six, which cannot be accomplished analytically. However, by 
applying a rotating wave approximation, the quadratic eigen-
value problem can be reduced to a linear eigenvalue problem. 
This approximation is valid, when the relevant frequencies are 
in the same range, that is

−ω2 +Ω2
j ≈ (Ωj − ω)2Ω̄, j = TM, TE, P. (130)

Here, Ω̄ is a constant average frequency close to ω, ΩTM and 
ΩTE. In this approximation, the equations of motion become

(ωTM − ω)xTM − iβeiθyTE − κ xP = ηρTMEx (131a)

(ωTE − ω)yTE + iβeiθxTM = ηρTEEy (131b)

(ωP − ω)xP − κ xTM = ηρPEx. (131c)

The following definitions were used: β = b/2Ω̄, 
κ = kP,TM/2Ω̄, η = 1/2mΩ̄n, ρj = nqj and ωj = Ωj − iΓj, with 
j = TM, TE, P, where n is the oscillator density in the effective 
medium. When writing the equations above in the matrix form

(M0 +∆M − Iω) x = ηR E||, (132)

with x = (xTM, xP, yTE)
T  and

M0 =



ωTM −κ 0
−κ ωP 0
0 0 ωTE


 (133)

∆M = βeiθ




0 0 −i
0 0 0
+i 0 0


 (134)

R =



ρTM 0
ρP 0
0 ρTE


 , (135)

it is evident that we arrived at the equation of motion as uti-
lized in section 5.1.

5.3. Conclusion

In summary, the dispersion of the MO response of hybrid 
magnetoplasmonic waveguides can now be understood in the 
picture of a simple oscillator model including the nonrecip-
rocal Lorentz force. In the case of a weak influence of the 
Lorentz force, analytical expressions for the optical response 
were obtained, which confirm previous numerical findings. 
Importantly, the spectral line shape of the MO response is 
fully determined by the optical properties of the system for 
zero magnetic field. Only the overall magnitude of the MO 
response is determined by the applied magnetic field.

The theory in this section  provides the understanding 
required to further develop hybrid magnetoplasmonic systems 
in highly integrated optics, demanding actively controlled 
optical modulation [195], magnetic field sensing [196, 197], 
refractive index sensing [145], and optical isolation [12–14, 
16–18]. It should also be mentioned that the presented findings 
can not only help to understand and optimize existing sample 
geometries, but can also be transferred to other geometries, 
such as 2D plasmonic gratings. Furthermore, by removing all 
plasmonic oscillators, the case of a purely dielectric grating-
waveguide combination can be realized.

In section 6 the presented model will be applied to a system 
consisting of an EuS thin film and an embedded plasmonic 
grating. By means of the model, it will be shown, that in the 
case of weak coupling between the plasmonic and waveguide 
resonance, the classical optical analog of electro magnetically 
induced transparency and absorption can be realized. 
Moreover, the model will be of fundamental importance to 
understand why the corresponding magneto-optic response in 
such a system is so exceptionally large.

In prospect of non-linear magnetoplasmonics, the presented 
model could also be of fundamental relevance. Although the 
described model is fully linear, a non-linear extension would be 
straight-forward by adding higher order coupling terms [210].

6. Giant Faraday effect via induced absorption

In this section a new hybrid magnetoplasmonic thin film struc-
ture will be demonstrated, that resembles the classical optical 
analog of electromagnetically induced absorption. In trans-
mission geometry the gold nanostructure embedded in an EuS 
film induces giant Faraday rotation of up to 14◦ for a thickness 
of less than 200 nm and a magnetic field of 5 T at T = 20 K . 
By varying the magnetic field from −5 T to +5 T, a rotation 
tuning range of over 25◦ is realized. As this is only a factor of 
three away from the Faraday isolation requirement, the dem-
onstrated concept could lead to highly integrated, nonrecipro-
cal photonic devices for optical isolation, light modulation, 
and optical magnetic field sensing.

This section  has been adapted with permission from the 
dissertation [43] and the article [42] published under the 
Creative Commons Attribution 4.0 International license.
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6.1. Realization with EuS-Au hybrid systems

In the last two sections it was demonstrated how the magneto-
optic (MO) response of a dielectric thin film is enhanced by 
the attachment of a plasmonic grating. This technique also 
allows the amplified MO response to be spectrally tailored 
by tuning the grating parameters. However, the MO perfor-
mance of such a system is limited by the low Q factor of the 
plasmon resonances in the grating. In the following, it will 
be shown that this limitation can be lifted elegantly by a 
novel approach, which is based on a classical optical analog 
of electro magnetically induced absorption (EIA) [181, 182]. 
Here, a strongly damped plasmon oscillation is weakly cou-
pled to a narrow linewidth waveguide resonance with a phase 
delay, leading to constructive interference. By tuning this cou-
pling carefully, a high-Q absorptive hybrid mode is realized, 
which can be used to resonantly amplify the Faraday rotation 
response. Furthermore, the EIA mechanism allows to utilize 
the high oscillator strength of the plasmonic resonance, lead-
ing to an efficient coupling of the incident light into the struc-
ture without reducing the effective Q factor due to the broad 
plasmonic resonance as was the case in previous approaches 
[34, 36, 40]. Although being only less than 200 nm thick, the 
presented novel structure design exhibits an order of magni-
tude better rotation capability than previous approaches that 
only resulted in fractions of degree rotation [24–26, 36, 63].

Furthermore, for low magnetic fields, the presented tech-
nique still yields rotation angles that were only achievable 
with 20 times stronger field strength in previous approaches 
[40]. The performance of the thin film structure is only a factor 
of 3 away from the 45° that are required for building a Faraday 
isolator which usually requires MO media with a thickness on 
the order of centimeters. The first demonstration of plasmonic 
resemblances of EIA [211, 212] and its related effect, namely 
electromagnetically induced transparency (EIT) [213–215], 
triggered significant attention. The special dispersion proper-
ties of such systems are known to facilitate plasmonic sens-
ing with narrow linewidths [216–218] as well as slow light  
[219–221] and delay lines [222, 223]. Furthermore, there 
have been extensive studies on enhanced nonlinear response  
[224, 225] in such systems. Here, it will be demonstrated that 
the EIA-like optical dispersion in the presented system also 
facilitates a giant MO response. While in EIT the light within 
a narrow spectral band passes through the sample, in the case 
of EIA real material polarization is excited within a narrow 
spectral region.

Another important aspect of the presented approach is the 
introduction of EuS as a new dielectric material for hybrid 
magnetoplasmonics. At low temperatures, EuS possesses an 
exceptionally large Verdet constant in combination with a 
high saturation magnetic flux density, resulting in a poten-
tially very strong MO response [58, 194]. Furthermore, it is 
transparent in the visible, qualifying it for the utilization in 
Faraday geometry. While EuS possesses as similar refrac-
tive index and absorption coefficient as EuSe [58, 194], EuS 
is significantly cheaper and already exhibits a stronger MO 
response at low magnetic field strengths. Further informa-
tion about the temperature dependence of the EuS material 

parameters can be found in the supplemental material of [42] 
as well as in the [53, 58, 194, 226]. We note in passing that 
in the utilized temperature regime the changes in the optical 
constants of both gold [227] and the fused silica substrate 
[228] can be neglected. Despite the need for low temper-
atures, EuS is well suited for studying plasmonic MO model 
systems, as it combines the above-mentioned benefits with 
simple fabrication by physical vapor deposition. This allows 
for the realization of complex hybrid magnetoplasmonic 
structure geometries, which are challenging when fabricated 
with commonly used magneto-optic materials, such as bis-
muth iron garnet [60] or yttrium iron garnet [229]. The reason 
is that the deposition of garnet films is a sophisticated pro-
cess that usually involves pulsed laser deposition and high-
temper ature annealing that could damage any underlying 
plasmonic structures.

The utilized structure geometry is depicted in the 
 figures 36(a) and (b). It consists of an EuS thin film with an 
embedded Au nanowire grating. The EuS film is magnetized 
by an external magnetic field in the z direction, which is also 
the direction of propagation of the incident light. The struc-
ture is fabricated in a three-step process. First, the bottom 
layer of the EuS film with thickness b is evaporated onto the 
glass substrate by physical vapor deposition. After that, the 
gold wire grating with thickness t, width w, and period p is 
structured via electron beam lithography. In the last step, an 
EuS film with thickness (h − b) is evaporated. This results 
in an EuS-Au thin film structure with a slightly corrugated 
upper surface. Figure 36(c) shows a colored scanning elec-
tron micrograph of the cross section of such a structure with 
geometry param eters p = 490 nm , t = 33 nm , w = 85 nm, 
h = 139 nm , and b = 33 nm. For the case of b  =  0, the non-
MO dispersion properties of such a metal-dielectric hybrid 
structure have previously been analyzed in detail by Zentgraf 
et  al [230]. Because of the presence of the glass substrate 

Figure 36. (a),(b) Schematic drawing of the sample geometry. p, 
nanowire period; t, w gold nanowire thickness and width. The wires 
are buried with a distance b between the glass substrate and their 
lower edge. The nominal thickness of the EuS magneto-optical 
waveguide is h, which is increased near the position of the gold 
nanowires. (c) Colorized scanning electron micrograph of the 
sample cross section. The samples are measured at T  =  20 K.  
Reproduced from [42]. CC BY 4.0.

Rep. Prog. Phys. 81 (2018) 116401

https://creativecommons.org/licenses/by/4.0/


Review

37

with a higher refractive index than the air above the sam-
ple, the x comp onent of the electric field of the TM wave-
guide mode is concentrated in the upper part of the EuS 
waveguide. Hence, the coupling between plasmon and TM 
waveguide mode is weak in comparison to the case where the 
metal wires are attached on top. In the work by Zentgraf et al 
it was also demonstrated that this weak coupling can lead 
to the classical analog of the quantum mechanical effect of 
electro magnetically induced transparency, resulting in a nar-
row transmission peak on top of a broad transmission dip for 
x-polarized incident light.

6.1.1. Exploiting the regime of induced absorption. It will 
now be demonstrated that by increasing the burial param-
eter b in the hybrid system, the phase between the plasmonic 
mode and the TM waveguide mode can be tuned such that 
the system undergoes a transition from EIT-like to EIA-like 
behavior [211, 212]. Figure 37 displays the simulated trans-
mittance and absorbance spectra for x-polarized incident light 
and different burial parameters b. The simulations have been 
carried out using the Fourier modal method for anisotropic 
materials [231]. The implementation is based on a scattering 
matrix algorithm [72], which has been improved by adaptive 
spatial resolution [208] to enable an efficient derivation of 
optical properties of metallodielectric systems. The refractive 

index of the substrate is assumed to be 1.456, and for the gold 
wires the permittivity data by Johnson and Christy [193] are 
used. In the investigated wavelength range, the refractive 
index of EuS is approximately 2. The utilized material model 
parameters for EuS can be found in the supplemental material 
of [42]. The geometry parameters were set to p = 490 nm, 
t = 33 nm, w = 85 nm, and h = 139 nm. In all simulations 
the bumps in the EuS film above the Au wires are approxi-
mated by a rectangular shape with thickness t and a width of 
2w. As expected [230], for small values of b, the transmit-
tance spectrum exhibits the characteristic EIT line shape with 
a broad, mainly plasmon-induced dip and a narrow, mainly 
TM waveguide-induced peak. For increasing values of b, this 
effect is reversed and the sharp waveguide feature flips around, 
resulting in a sharp absorbance peak that is characteristic for 
an EIA-like system. At 715 nm, the spectra are slightly dis-
torted due to the Rayleigh anomaly [38]. The transition of the 
spectra with increasing b can be understood in the picture of 
coupled Lorentz oscillators introduced by Taubert et al [212]: 
here, a strongly damped Lorentz oscillator (in this case the 
plasmon) and a less damped Lorentz oscillator (in this case 
the TM waveguide mode) are coupled via a complex coupling 
constant that includes an additional phase delay. It was shown 
that by changing the phase of the coupling constant, the opti-
cal response of the system turns from EIT-like to an EIA-like 
behavior. In the present case, this behavior is particularly pro-
nounced for b between 25 and 36 nm (see figure 37(d), oval 
area). Furthermore, by changing the distance between the wire 
grating and the substrate, the coupling phase can be changed. 
As in other cases of plasmonic EIT and EIA, the reflection 
behavior of the system also changes with the coupling phase, 
which leads to the situation that the EIT coupling regime can 
be observed most pronounced in the transmittance spectrum, 
whereas the EIA case can be identified best in the absorbance 
spectrum [212]. In section 6.2, there will be an extended dis-
cussion on interpreting the presented magnetoplasmonic sys-
tem in the picture of coupled oscillators.

For a burial parameter of b = 33 nm , the EIA coupling 
regime manifests itself also in the transmittance spectrum in 
the form of a small dip (see figure 37(c)). For this case the 
relation between the EIA-like behavior and the MO response 
was investigated experimentally. The figures  38(a) and (b) 
display the measured transmittance and Faraday rotation 
spectra for x-polarized incident light and different grating 
periods p. The measurements are performed at 20 K and a 
magnetic field of 5 T in the z direction. The Faraday rotation 
was measured with a rotating analyzer setup where the inci-
dent polarization state was prepared using a polarizer inside 
the cryostat. For a period of 490 nm, the sharp EIA feature 
is best centered with respect to the broad, mainly plasmonic, 
transmittance feature. For the same grating period, at the 
spectral position of the EIA resonance, the Faraday rotation 
exhibits a sharp maximum of about 8◦, which is a substanti al 
rotation enhancement compared to a bare EuS film with 
thickness h = 139 nm  (gray curve). This behavior can be 
understood in the following way: For wavelengths close to 
the narrow EIA resonance, the system acts as a resonator 

Figure 37. (a),(b) Simulated transmittance and absorbance 
(1  −  T  −  R with T and R denoting transmittance and reflectance, 
respectively) for x-polarized incident light and different burial 
parameters b. For increasing b there is a gradual transition from the 
regime of induced transparency to induced absorption. The white 
dotted line indicates the Rayleigh anomaly. (c),(d) Slice cuts for a 
clearer view on the line shapes of the spectra. The oval indicates the 
EIA regime, characterized by very sharp induced absorption peaks. 
Reproduced from [42]. CC BY 4.0.
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with a relatively high Q factor, implying multiple vertical 
round-trips of the light through the MO material before it is 
coupled out in z direction. Due to Lorentz non-reciprocity, 
the polarization rotation adds up for each propagation cycle, 
resulting in an enhanced rotation compared to a single pass 
through the EuS film. Furthermore, the EIA mechanism 
allows utilizing the high oscillator strength of the plasmonic 
resonance, leading to an efficient coupling of the incident 
light into the structure without reducing the effective Q fac-
tor due to the broad plasmonic resonance as was the case 
in previous approaches [34, 36, 40]. As such, the plasmonic 
EIA mechanism provides an elegant way to greatly increase 
the interaction between the incident light and the MO mat-
erial. In section 6.2 the connection between the EIA disper-
sion and Faraday rotation enhancement will be discussed in 
further detail by means of a coupled oscillator model. The 
measurement is also in good agreement with the full numer-
ical simulation displayed in the figures 37(c) and (d). In the 
measured wavelength region, the Faraday rotation of EuS 
shows a notable wavelength dependence due to a material 
resonance (see gray line). Hence, in order to obtain realistic 
simulation results, the material dispersion of EuS is mod-
eled with a MO Lorentz oscillator (see section 2.3.1). The 
free model parameters are fitted such that the measured 
MO response of a bare EuS film matches the simulated MO 
response in the wavelength range of interest between 650 
and 850 nm. The discrepancy between the measured and 
simulated Faraday rotation below 650 nm is due to the lim-
ited model accuracy in this range. In the transmittance spec-
tra, the grating-induced Rayleigh anomaly is barely visible. 
For example, for p  =  490 nm it occurs at 715 nm and is most 
visible in the simulated Faraday rotation, where it manifests 
itself as a small kink. However, the Rayleigh anomaly has no 
major influence on the Faraday rotation enhancement as it is 
well separated from the enhancement by the EIA resonance.

Also for y-polarized incident light, large Faraday rotation 
angles can be realized. This is illustrated by the figures 39(a) 
and (b), which depict the corresponding transmittance 
and Faraday rotation spectra for a sample geometry with 
t = 33 nm, w = 75 nm, h = 139 nm, b = 33 nm, and differ-
ent grating periods p. Since a direct excitation of the plasmon 
resonance and TM waveguide resonance is only possible for 
x-polarized light, they have no discernable influence on the 
transmittance line shape. However, as the x- and y-polarized 
eigenmodes are coupled via the magnetic field, the Faraday 
rotation spectrum for y-polarized incidence is strongly influ-
enced by the x-polarized eigenmodes (and vice versa) [41], 
which results in strongly enhanced Faraday rotation also for 
y-polarized incidence. Furthermore, this behavior will be dis-
cussed in more detail in section 6.2. For a grating period of 
505 nm, the Faraday rotation reaches values of up to 14° at a 
transmittance value of 17%. Given the thin structure profile of 
below 200 nm, this is a giant Faraday rotation value and only 
a factor of 3 away from a Faraday isolator. Again, the meas-
urement results are in good agreement with the numerical 
simulations plotted in the figures 39(c) and (d), except that the 
Rayleigh anomalies (kinks in the left shoulders of the trans-
mittance spectra) are washed out in the measurement. This 
happens certainly due to sample roughness and limited fab-
rication accuracy. As in the case of x-polarized incidence, the 
Rayleigh anomalies are well separated from the Faraday rota-
tion enhancement feature and have no significant influence on 
the Faraday rotation spectra.

6.1.2. Influence of magnetic field strength. Furthermore, 
since the rotation angle scales with the applied magnetic field, 
the presented structure offers an impressive polarization tun-
ing range of over 25◦. This is indicated in figure 40(a), where 
the Faraday rotation spectra are plotted for different magnetic 

Figure 38. The left-hand column displays the measured 
transmittance (a) and Faraday rotation (b) for x-polarized incident 
light for a wire width of 85 nm, burial parameter b = 33 nm, and 
different grating periods. The experimental data agree with the 
performed simulation shown in the right-hand column (c),(d). 
Reproduced from [42]. CC BY 4.0.

Figure 39. The left-hand column displays the measured 
transmittance (a) and Faraday rotation (b) for y-polarized incident 
light for a wire width of 75 nm, burial parameter b = 33 nm, and 
different grating periods p. The experimental data agree well with 
the performed simulation shown in the right-hand column (c),(d). 
For a period of 505 nm, the Faraday rotation reaches values of up to 
14°. Reproduced from [42]. CC BY 4.0.
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field strengths ranging from  −5 to +5 T. The spectra for 
inverted magnetic fields exhibit almost perfectly mirror sym-
metric shapes. Any deviations from absolute mirror symme-
try can be explained by a slight misalignment between the 
gold wires and the incident polarization. Figure 40(b) shows 
a close-up of the Faraday rotation enhancement feature for 
lower magnetic field strengths that can be realized easily 
using standard permanent magnets [232]2. Even for magnetic 
fields as low as 250 mT, the Faraday rotation still reaches val-
ues of up to 4.9◦. This is a similar rotation performance as was 
previously realized for a 220 nm thick hybrid structure based 
on EuSe, however, only with 20 times larger magnetic fields 
[40]. Figure 40(c) displays the Faraday rotation at 737 nm as 
a function of applied magnetic field and illustrates the satur-
ation behavior. Up to 500 mT the rotation angle increases lin-
early with the applied magnetic field, whereas for larger fields 
saturation sets in and the response curve flattens out.

6.1.3. Simulation of the ellipticity spectra. As the utilized 
measurement setup does not allow for measuring the elliptic-
ity spectra, in the following, the numerically simulated ellip-
ticity spectra are provided. Figure 41 displays the ellipticity 
spectra of the sample geometries with 85 and 75 nm wire 
width. In the first case, a grating period of 490 nm results in 
the largest Faraday rotation peak. At its center wavelength, 
the corresponding ellipticity is close to zero. This behavior is 
consistent with the following rule of thumb, originating from 

the Kramers–Kronig relations [44]: a symmetric Faraday 
rotation peak usually corresponds to asymmetric (s-shaped) 
ellipticity spectrum with a zero-crossing at the center wave-
length of the rotation peak. On the other hand, a symmet-
ric ellipticity peak corresponds to s-shaped Faraday rotation 
spectrum with the zero crossing at the center wavelength of 
the ellipticity peak. For example, the latter behavior is exhib-
ited for a wire width of 75 nm, and a period of 505 nm, as 
illustrated in figure 41(b).

6.2. Harmonic oscillator modeling

To obtain further insight into the connection between EIA-like 
modal coupling and the enhancement of the magneto-optic 
response, it is useful to view the presented magnetoplasmonic 
system in the picture of coupled oscillators, as depicted in 
 figure 42(a). This oscillator scheme was originally introduced 
in [41] and is now modified in analogy to the non-magneto-
optic model by Taubert et  al to account for EIA [212]. In 
this very simple model, the magnetoplasmonic system is 
described using two charged oscillators that are driven by 
the external light field: the oscillator on the right-hand side 
represents the plasmonic excitation, and its movement is 
restricted to the x direction, as the plasmonic resonance can 
only be excited for x-polarized light. The second oscillator is 
associated with the waveguide excitations inside the MO slab. 
This oscillator can be displaced both in the x and y direction, 
which corresponds to the excitation of TM and TE polarized 
waveguide modes respectively. As discussed by Taubert et al, 
it is crucial for realizing the coupling regime of EIA that the 
coupling between the two contributing oscillators includes a 
retardation phase [211]. Hence, the coupling between plas-
mon and TM waveguide is modeled with a complex coupling 
constant κ̃ = κ exp(iφ), with φ as the phase. The influence 
of the applied static magnetic field is taken into account via 
the Lorentz force acting on the 2D waveguide oscillator. The 
resulting electric susceptibility associated with this oscillator 
system is given by [41]

χ(ω) =

(
χx +χxy

−χxy χy

)
= ηRTM−1R, (136)

Figure 40. (a) Measurement of the magnetic field dependence of 
the polarization rotation for a period of 505 nm. (b) Closer view on 
the rotation spectra for weak magnetic fields. Already for 250 mT  
the Faraday rotation reaches values of over 4°. (c) Saturation 
behavior of the Faraday rotation at 737 nm. Reproduced from [42]. 
CC BY 4.0.

Figure 41. Simulated Faraday rotation and ellipticity spectra 
corresponding to the sample geometries with 85 nm wire width  
(a) and 75 nm wire width (b). Reproduced from [42]. CC BY 4.0.

2 Due to the ω  based mathematical structure of the model, the response 
curves were plotted over angular frequency. This should be kept in mind 
when the modeled spectra are compared to the measured spectra, which are 
plotted over wavelength.
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where the matrices

M =




ΩTM −κeiφ −iβ
−κeiφ ΩP 0
+iβ 0 ΩTE


 (137)

and

R =



ρTM 0
ρP 0
0 ρTE


 (138)

are introduced. Here, the terms Ωi = ωi − ω − iγi/2, 
(i = TM, P, TE) contain the eigenfrequencies and damping coef-
ficients of the individual oscillators. The magneto-optic coeffi-
cient β is proportional to the gyration of the waveguide material 
and, thus, to the applied magnetic field. The occurrence with 
two different signs originates from the cross product in the 
Lorentz force. The nonzero components ρi  (i = TM, P, TE) in 
the matrix R are proportional to the charge of the oscillators 
and relate to the individual oscillator strengths. η is a propor-
tionality constant.

In the following, this model is used to illustrate the relation 
between the EIA and EIT coupling regimes as well as their 
influence on the magneto-optic response. For this, to keep the 
degrees of freedom to a minimum, the following simple (and 
dimensionless) parameter constellation is utilized: the indi-
vidual resonances in the system are spectrally close, while the 
waveguide modes having significantly smaller linewidths than 
the plasmon. Hence, the eigenfrequencies of the three oscil-
lators are assumed to be equal, i.e. ωTM = ωTE = ωP = ω0 
and for the damping coefficients it is assumed that γP = 1 and 
γTM = γTE = 0.1. Furthermore, the proportionality constant η 
is set to 1 and it is assumed that the plasmon oscillator cou-
ples much stronger to the external light field than to the TM 
waveguide mode. Hence, the oscillator strengths are weighted 
by setting ρTM = 0 and ρP = 1. Furthermore, the oscillator 
strength of the TE waveguide oscillator was set to ρTE = 0.32, 
which represents the case in which χx and χy (not shown here) 
are approximately equal.

The plots in figure  42(b) show the resulting frequency 
dependence of the imaginary part of χx, which is propor-
tional to the absorbance of x-polarized incident light. The 
different line colors correspond to the different coupling 
phases. Furthermore, from the left to the right column, the 
coupling amplitude κ is decreased. All spectra of χx show 
a broad, mainly plasmon-induced, background with a sharp 
modulation on top. For φ = 0 this modulation is a narrow 
dip at ω0 and corresponds to the case of EIT. Increasing the 
coupling phase to φ = π/2 turns this modulation into a nar-
row EIA resonance, while the case of φ = π/4 represents an 
intermediate regime. Furthermore, an increase of κ leads to a 
more pronounced modulation. However, at some point when 
κ is increased further (not shown here), the coupling is not 
weak anymore and a significant mode splitting occurs for 
φ = 0, and for φ = π/2 solutions with negative absorption 
can emerge. As such solutions correspond to the the presence 
of gain, they are not relevant for the passive plasmonic sys-
tem discussed here [212]. In summary, the classical analogs 

of EIT and EIA are indeed very closely related: both sce-
narios occur in the regime of weak coupling where there is no 
significant spectral repulsion between the narrow linewidth 
mode (in this case, the TM waveguide mode) and the broad 
linewidth mode (in this case, the plasmon). The only differ-
ence between the two scenarios lies in the coupling phase 
φ. It should be pointed out that the absorption behavior is 
approximately independent of the magnetic field, as |β| can 
be assumed to be small (here, it is set to 0.001), in which case 
it predominantly influences the off-diagonal elements of χ 
but not the diagonal elements [41].

The corresponding magneto-optic response is encoded 
in the off-diagonal elements of χ that are proportional to 
β and, thus, to the magnetic field. In first approximation, 
the Faraday rotation of the system is proportional to the 
 imaginary part of χxy (see section  2.2.3), which is plotted 
in figure 42(c). It should be noted that the real part of χxy 
would correspond to the ellipticity (not plotted here). The 
graphs nicely illustrate the fundamental working principle 
of the system: with increasing κ , not only the modulation 
of χx increases (i.e. the EIA or EIT resonances become 
more pronounced), but also the modulation of χxy becomes 
stronger. In other words, due to the magnetic field, the EIA 
or EIT resonances not only occur in absorption, but also 
in Faraday rotation. The more pronounced the EIA or EIT 
resonances are, the larger the Faraday rotation enhancement 
becomes. Furthermore, for a constant κ this modulation of 

Figure 42. (a) Oscillator model representing the magneto-
plasmonic nanostructure. A precondition for EIA is that the 
coupling between the TM waveguide mode and the plasmon mode 
is weak and includes retardation. This is taken into account by the 
complex coupling constant κ exp(iφ) with phase φ. (b) Imaginary 
part of the component χx, which is proportional to the absorbance 
of x-polarized incident light. (c) Imaginary part of χxy, which 
induces polarization rotation of both x- and y-polarized incident 
light. Reproduced from [42]. CC BY 4.0.
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χxy is strongest for φ = π/2, i.e. for the EIA case. At this 
point it should be noted that in practice the difference in the 
MO response obtained by EIA-like and EIT-like coupling 
can be less pronounced than in the modeled spectra. The rea-
son is that tuning the structure geometry from the EIT to the 
EIA case usually also slightly influences the other coupling 
parameters such as κ, which also have a strong influence 
on χxy. However, the model correctly reflects the trend that 
the EIA case produces stronger MO response than the EIT 
case. Another revealing aspect of this model is that although 
only the oscillators moving in the x direction contribute to 
the EIA resonance, this resonance also leads to increased 
polarization rotation for y-polarized light: this follows from 
the fact that χ is antisymmetric. Hence, the resonance in χxy 
translates to a conversion from x to y polarization as well as 
to a conversion from y to x polarization. However, in general, 
the Faraday rotation spectra for x- and y-polarized light are 
not completely equal since for finite propagation distances 
also the diagonal components χx and χy possess an influ-
ence [41, 44]. As shown by the measurements in figure 39, 
the Faraday rotation can be even larger for y-polarized light 
than for x-polarized light. It should also be pointed out that 
the line shape of χxy depends on the complex phase of the 
magneto optical coupling constant β, which is related to the 
gyration of the MO material [41]. For the present example, 
this phase is set to −45◦. Changing this phase does not affect 
the average magnitude of the magneto-optic response, but 
only determines whether the Im(χxy) spectra show a down-
up line shape (negative phase), an up-down line shape (posi-
tive phase), or a peak (zero phase) when plotted over angular 
frequency. Due to the ω based mathematical structure of the 
model, the response curves were plotted over angular fre-
quency. This should be kept in mind when the modeled spec-
tra are compared to the measured spectra, which are plotted 
over wavelength.

As a final remark, it should be mentioned that the presented 
oscillator model is the simplest possible approach to illustrate 
the relation between EIA-like coupling and the enhanced MO 
response in the system. Of course, this results in neglecting 
secondary influences observed in the actual measurements, 
such as material dispersion, background Faraday rotation due 
to the film, or diffraction effects such as Rayleigh anomalies 
[41]. Nevertheless, the benefit of this model is that it provides 
a very intuitive description of the system.

6.3. Conclusion

The design flexibility enabled by the use of EuS as magneto-
optic material was exploited to realize a hybrid magnetoplas-
monic thin film structure that represents the classical optical 
analog of EIA. Unlike in previous approaches where the low 
quality factor of localized surface plasmon resonances lim-
ited the Faraday rotation enhancement, the coupling regime of 
EIA allows us to leverage both the high quality factor of the 
waveguide resonances and the large oscillator strength of the 
plasmons. Both these aspects result in dramatically increased 
light-matter interaction and MO response. As a result, the 

EIA-like system induces giant Faraday rotation of over 14◦ for 
a thickness of less than 200 nm and a magnetic field of 5 T at 
T = 20 K . By varying the magnetic field from −5 T to +5 T, 
an impressing rotation tuning range of over 25◦ is realized. 
This is a MO performance that exceeds any previous approach 
considerably.

7. Conclusion and outlook

We have seen that the field of nonreciprocal plasmonics has 
become big and multifaceted. Furthermore, every method of 
breaking Lorentz reciprocity usually comes with certain prac-
tical limitations, such as fabrication difficulties, optical non-
linearities, size constraints and overall technical feasibility. 
The various approaches in nonreciprocal nanophotonics can 
be divided into two groups: firstly, there have been efforts to 
realize enhanced MO effects of nanostructures with the aim to 
eventually integrate them into miniaturized versions of con-
ventional nonreciprocals devices such as Faraday isolators. 
Secondly, there have been several attempts to directly realize 
complete nonreciprocal photonic devices such as optical iso-
lators and circulators.

Our analysis of the second group of approaches showed 
that, so far, there has not been realized a system with practical 
degrees of isolation and low lossses simultaneously. Especially 
nonlinear systems seem inherently hampered as nonlinear 
effects are usually exploited through losses. Furthermore, the 
intensity dependent optical isolation is usually not practical. 
Time modulated systems are very promising, as they already 
reached practical relevance within the microwave regime. 
However, optical realizations are usually only theoretical or 
proof-of-concept realizations [8]. Nevertheless, the field still 
becomes more and more active.

With regards to enhanced Faraday rotation we have seen that 
dielectric MO films in combination with plasmonic enhance-
ment have been proven to be a very powerful approach. In 
comparison, ferromagnetic nanoantennas are hampered by 
large optical losses and significantly lower MO response due 
to low quality resonances. However, magnetoplasmonic anten-
nas remain a very intriguing platform for sensing applications 
[145]. Furthermore, as the required fabrication techniques are 
widely available, magnetoplasmonic antennas are also attrac-
tive for studying fundamental MO interaction effects such as 
chirality in combination with magnetic gyration. For such 
studies it is beneficial that magnetoplasmonic antennas com-
prise a rather simple and clean physical system.

In this review we demonstrated that especially large Faraday 
rotation can be achieved for hybrid magnetoplasmonic crystals 
employing one of the two working principles: In the first case, 
a gold nanowire grating is attached on top of a magneto-optic 
(MO) thin film. The strong coupling between the plasmon 
resonance in the gold grating and a waveguide mode in the 
MO film results in the formation of a waveguide-plasmon-
polariton (WPP). This hybrid mode can facilitate large Faraday 
rotation of up to 4◦ for a 220 nm thick EuSe-Au structure. 
Furthermore, the WPP dispersion properties can be leveraged 
to tailor the working wavelength of a Faraday rotator via the 
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grating parameters. However, even stronger MO response 
can be obtained for the second type: here, a plasmonic gold 
grating is embedded into a MO film. Such a system can be 
regarded as a classical optical analog of electro magnetically 
induced absorption (EIA). Its unique dispersion properties 
allow to compensate for the low Q factor of the plasmonic 
resonance, which limits the MO response in the WPP-based 
approach. The presented EIA-like EuS-Au structures induce 
giant Faraday rotation of up to 14◦ for a thickness of less than 
200 nm and a magnetic field of 5 T at T = 20 K . Furthermore, 
by varying the magnetic field from  −5 to +5 T, the polariza-
tion of the transmitted light can be continuously tuned over an 
impressively wide range of over 25◦. As the realized magneto-
optic response is only a factor of three away from the Faraday 
isolation requirement, this concept could lead to highly inte-
grated, nonreciprocal photonic devices for optical isolation, 
light modulation, and optical magnetic field sensing.

Furthermore, as was demonstrated recently, strong MO 
dispersion of nanostructured systems can also be leveraged 
for refractive index sensing, allowing very precise detection of 
biochemical substances [145]. Here, the exceptionally sharp 
spectral features in the MO response of EIA systems could 
also turn out to be a powerful tool.

A fruitful strategy to even further increase the MO 
response of the EuS-Au structures could be to use a thicker 
MO slab in combination with gratings that possess a similar 
lattice constant as in the case of the EIA structures discussed 
in section  6. This way, higher-order waveguide resonances 
could be excited, which, in combination with EIA-like disper-
sion, could lead to Faraday rotation values closer to or even 
above 45◦. Also some sort of physical or chemical treatment 
to enhance the surface quality of the EuS film is expected to 
further increase the resonator performance resulting in larger 
Faraday rotation.

In future designs, the necessity for low temperatures could be 
significantly relaxed by doping europium compounds with gad-
olinium. For example, it has been shown that doping EuO with 
gadolinium can raise the Curie temperature (where the Faraday 
rotation starts to drop) from 69 to 135 K [57, 205], which is 
well above liquid nitrogen temperature. Of course, the concept 
of WPP- and EIA-boosted MO response is not restricted to Eu 
compounds and can in principle be applied to many materials. 
The only requirements are a sufficient transparency of the MO 
material and a suitable procedure for the nanostructure fabrica-
tion. For example, although BIG only provides moderate MO 
response, it allows room-temperature operation and exhibits 
high transparency in the near-infrared wavelength range.

EuS, on the other hand, enables simple fabrication of com-
plex layer-based magneto-optic geometries. This is a very 
powerful and rare property among transparent magneto-optic 
materials. Since EuS is much cheaper than EuSe and also pro-
vides stronger MO response already at low magnetic fields, 
EuS could become a trigger for other interesting and poten-
tially very powerful magneto-optic and magnetoplasmonic 
designs. This could include both 2D and 3D systems, for 
instance EuS photonic crystals, 2D nanopatches, as well as 
even magneto-optic metamaterials [20, 233].

The theory based on harmonic oscillators allows the 
description of the optical response of hybrid magnetoplas-
monic systems in a simple and intuitive picture. This model 
provides analytical expressions for the optical response and 
confirms previous numerical and experimental findings. 
One important outcome of the model is that the spectral line 
shape of the MO response is fully determined by the opti-
cal properties of the system for zero magnetic field. Only the 
overall magnitude of the MO response is determined by the 
applied magnetic field. An extension of the oscillator model 
to 2D and 3D systems should be feasible. This could facili-
tate the development and optimization of magnetoplasmonic 
crystals of higher dimensions. Furthermore, by removing all 
plasmonic oscillators, the case of a purely dielectric grating-
waveguide combination can be modeled. In prospect of non-
linear magnetoplasmonics, the presented model could also be 
of fundamental relevance. Although the model is fully linear, 
a non-linear extension would be straight-forward by adding 
higher order coupling terms [210].

Furthermore, as for most applications low insertion losses 
are crucial, the concept of EIT [215] could be a powerful 
mechanism to realize highly transparent magnetooptical nan-
ophotonic systems. It would be especially interesting to see an 
experimental realization of magnetooptic EIT metasurfaces as 
theoretically demonstrated by Christofi et al [122] based on 
idealized material parameters.

Parts of this concluding section  have been adapted with 
permission from the dissertation [43].
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