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Thin elongated rod antennas with a diameter smaller than the skin depth exhibit surface plasmon polariton modes
that can propagate along the antenna while being reflected at the antenna ends. In the line-current model, a
current is associated with these modes in order to approximate the optical properties of the antennas. We find
that it is crucial to correctly derive the reflection of the surface plasmon polariton modes at the antenna ends for
predicting the resonance position and shape accurately. Thus, the line-current model allows for deriving the
wavelength scaling behavior of plasmonic near fields as well as the emitted third-harmonic intensity efficiently.
Neglecting the frequency dependence of the nonlinear susceptibility, we find that the third-harmonic intensity of
such metallic rod antennas scales as the fourth power of the frequency, whereas it decreases with the twelfth power
within the limit of the generalized Miller’s rule. © 2018 Optical Society of America

OCIS codes: (250.5403) Plasmonics; (240.6680) Surface plasmons; (190.2620) Harmonic generation and mixing.
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1. INTRODUCTION

Plasmonic resonances in metallic antennas concentrate electro-
magnetic fields in small volumes and, thus, amplify and control
light–matter interaction. This includes the spontaneous
emission rate and the directivity of quantum emitters [1–6],
the enhancement of circular dichroism signals [7–10] and
Faraday rotation [11–13], second- and third-harmonic gener-
ation [14–18], advanced concepts for optical refractive index
sensors [19–24], and antenna-assisted surface-enhanced infra-
red absorption spectroscopy [23,25,26].

As shown in [27], plasmonic resonances in wire antennas
can be understood in analogy to Fabry–Perot modes by con-
sidering the wire antenna as a cavity for surface plasmon polar-
itons propagating along the wire. At the wire ends, the surface
plasmon polariton is partially reflected, propagates in the
opposite direction, and is reflected at the other end. Resonances
occur for constructive interference of the surface plasmon
polariton after one round trip. The difference to classical
antennas is that the wavelength of the surface plasmon polar-
iton significantly differs from the free-space wavelength and the
field can penetrate into the antenna for the plasmon modes, as
we require working in a regime in which the diameter is smaller
than the skin depth of the metal. Based on these considerations,
Dorfmüller et al. have developed a line-current model for pre-
dicting the near field of the plasmonic resonances in the vicinity

of thin elongated wire antennas for illumination by far-field
incidence [28]. The approach has then been adapted to
near-field excitation by quantum emitters in [29], where also
the influence of the radiation damping due to the reflection at
the antenna ends is taken into account by a simple approxima-
tion. More sophisticated models for the reflection at the
antenna ends rely on analytical calculations restricted to flat
antenna ends [30] as well as numerical simulations for more
complex geometries [31,32].

In this paper, we combine the line-current model for far-
field incidence [28] with the near-field formulation described
in [29]. Furthermore, we replace the approximate consideration
of the radiation damping in [29] by numerical simulations of
the reflection of a surface plasmon polariton at the antenna
end. Comparison with full numerical simulation of the three-
dimensional rod antenna geometries reveals that this approach
provides a significantly better estimation of the antenna proper-
ties compared with the aforementioned approaches.

Our numerical simulations of the surface plasmon polariton
and its reflection at the antenna end as well as the reference
simulations of the optical properties of the entire antenna
geometry are carried out using the finite element method.
While the numerical simulation of an entire three-dimensional
antenna geometry can be rather time- and memory-consuming,
the simulations of the surface plasmon polariton and its
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reflection at the antenna end can be carried out very efficiently,
as they are effectively two-dimensional. Most importantly, these
two-dimensional simulations are independent of the antenna
length, so that the results of the line-current model can be given
as an analytical function of the antenna length. Thus, it is pos-
sible to derive the wavelength scaling behavior of the optical
response of thin elongated wire antennas in a fast and efficient
manner.

We demonstrate here how to use the line-current model for
predicting the wavelength scaling of the electromagnetic near
fields, which is highly relevant for resonantly enhanced refrac-
tive index sensing [22,24] as well as antenna-assisted surface-
enhanced infrared absorption spectroscopy [23]. Furthermore,
we derive the wavelength scaling of the resonantly enhanced
third-harmonic signal from thin wire antennas.

2. LINE-CURRENT MODEL

The fundamental idea of the line-current model is sketched in
Fig. 1. An incident field excites a current in the antenna. The
current propagates to the antenna end, where it is partially
reflected and partially transmitted. In the limit of a thin wire,
the current predominantly stems from the fundamental surface
plasmon polariton mode, i.e., a mode that propagates along the
long wire axis and is bound in the other directions. The forward
and backward propagating surface plasmon polariton results in
an oscillating current distribution, from which we can calculate
the radiation to the far field.

The material surrounding the antenna is modeled via its di-
electric permittivity ε1; the permittivity of the metallic antenna
is ε2. In our examples, we are using ε1 � 1 and ε2 defined by
experimental permittivity data of gold [33]. The corresponding
wavenumbers are k1 � ffiffiffiffiffi

ε1
p

k0 and k2 � ffiffiffiffiffi
ε2

p
k0, respectively,

with k0 � ω∕c. The long axis of the antenna is oriented along
the z direction, and the antenna length is denoted by L0. The
cross section normal to the z direction has a circular shape with
radius R; the antenna ends are semispheres. When we consider
properties of the full antenna, such as scattering and absorption
cross section, we will henceforth use spherical coordinates
ρ, ϑ, and φ with unit vectors ρ̂, ϑ̂, and φ̂. The origin of the
coordinate system is located at the center of the antenna.

The incident angle is defined as θ � π∕2 − ϑinc. For the cur-
rent propagating along the antenna in the z direction, we will
consider a cylindrical coordinate system with coordinates ρ, ϕ,
and z, with unit vectors ρ̂, ϕ̂, and ẑ.

The electric field of the fundamental surface plasmon polar-
iton propagating along an infinitely long metal cylinder (radius
R) has a vanishing ϕ component. It is given in the exterior
region (ρ > R) by

E �1�
ρ � −iE1

kp
κ1

H �1�
1 �κ1ρ�eikpz , E �1�

z � E1H
�1�
0 �κ1ρ�eikpz ,

(1)

where H �1�
l denotes Hankel functions of first kind and order l.

The time dependence exp�−iωt� has been omitted for the sake
of simplicity. Furthermore, κ21 � k21 − k

2
p. In the interior region

(ρ ≤ R), we obtain

E �2�
ρ � −iE2

kp
κ2

J1�κ2ρ�eikpz , E �2�
z � E2J0�κ2ρ�eikpz :

(2)

Here, J l denotes Bessel functions of the first kind and order
l , and κ22 � k22 − k

2
p. The propagation constant kp can be de-

termined from the following transcendental equation [27]:

ε2�ω�
κ2R

J1�κ2R�
J0�κ2R�

−
ε1
κ1R

H �1�
1 �κ1R�

H �1�
0 �κ1R�

� 0: (3)

Figure 2 depicts the calculated dispersion relation of the
fundamental surface plasmon polariton mode propagating in
an infinitely long gold cylinder of radius R � 10 nm in
vacuum.

A. Derivation of Current and Far-Field Properties

The incident field Einc induces a current j inside the rod an-
tenna that results in a scattered field Escat outside the antenna.
The total field in the exterior is given by Etot � Einc � Escat and
is related to the internal field Eint inside the antenna by the
boundary conditions for Maxwell’s equations. The induced
current obeys

incident field

radiated
field
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I||
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z
0

1
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Fig. 1. Schematic of the line-current model for a rod antenna (per-
mittivity ε2) in homogeneous space (permittivity ε1) with length L0
and a cylindrical cross section of radius R. The incident field excites a
surface plasmon polariton in the rod antenna, which propagates to the
antenna ends, where it is partially reflected (reflection coefficient r).
The forward (backward) propagating surface plasmon polariton is de-
noted by the current I� (I −), and the driving current is I∥. In this
model, the field radiated by the antenna originates from the emission
of the line current to the far field.
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Fig. 2. Calculated dispersion relation (solid black line) for a surface
plasmon polariton mode propagating in an infinitely long gold cylin-
der of radius R � 10 nm in vacuum. The blue solid curve denotes the
corresponding decay length. The black dashed line is the light cone of
vacuum.
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j � −iωε0�ε2�ω� − ε1�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≡Δε

Eint: (4)

For wire antennas thinner than the skin depth of the metal,
we may assume that the current is approximately constant
across the plane perpendicular to the wire. Furthermore, the
electromagnetic field of the fundamental surface plasmon
polariton propagating in such a thin wire does not depend
on the azimuthal angle ϕ. It exhibits a dominant z component
and a negligible ρ component, which follows from evaluating
Eq. (2) for small arguments. Hence, the current j is predomi-
nantly z directed, with

j�r� ≈ I�z�Θ�R − ρ�ẑ : (5)

Here, Θ denotes the Heaviside function. For the current
I�z�, we might make the following ansatz [28] in order to
account for the contributions of the incident field as well as
the surface plasmon polariton propagating with kp along
the wire:

I�z� � I∥eik∥z � I�eikpz � I−e−ikpz : (6)

In this case, k∥ ≡ k1 sin θ denotes the component of the
incident wave vector parallel to the wire antenna.

Let us now relate the different contributions in Eq. (6) to
the incident field. The vector potential associated with the
current in Eq. (6) is [34]

A�r� � μ0
4π

Z
dV 0j�r 0� e

ik1jr−r 0 j

jr − r 0j : (7)

Using Eq. (5) in Eq. (7) as well as jr − r 0j≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 � �z − z 0�2

p
, we obtain

A�r� ≈ μ0
4π

SRẑ
Z

L0∕2

−L0∕2
dz 0I�z 0� eik1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2��z−z 0�2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 � �z − z 0�2

p : (8)

If we assume that ρ ≪ λ1 with λ1 � 2π∕k1, the second fac-
tor in the integrand in Eq. (8) becomes localized around z.
Hence, we may change variables from z 0 to ζ � z and extract
I�ζ � 0� � I�z� from the integral, resulting in

A�r� ≈ μ0
4π

SRẑI�z�
Z

z�L0∕2

z−L0∕2
dζ

eik1
ffiffiffiffiffiffiffiffiffi
ρ2�ζ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 � ζ2

p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡Z̃

, (9)

with SR � 2πR2 being the area of the rod cross section.
According to [28], Z̃ takes the role of a characteristic impedance.

The z component of the scattered field at the wire surface
can be calculated from Eq. (9) as

E scat
z �z,R� � iω

k21
�k21 � ∂2z �Az �

iω
k21

μ0
4π

SRZ̃ �k21 � ∂2z �I�z�:

(10)

The boundary condition for the z component of the electric
fields at the surface of the metal wire is

E scat
z �z,R� � E inc

z �z,R� � E int
z �z,R�: (11)

The incident field can be assumed constant across the wire,
i.e., E inc

z � E inc
0 cos θ exp�ik∥z�. Together with Eqs. (4) and

(5) as well as Eq. (10), this results in

E inc
0 cos θeik∥z � iω

k21

μ0
4π

SRZ̃ �k21�∂2z �I�z��
iI�z�
ωε0Δε

: (12)

Using Eq. (6) and the fact that the resulting equations have
to be fulfilled independently for all values of k∥ and kp, we
obtain according to [28] that

I∥ � −iωε0ΔεΔkE inc
0 cos θ, (13)

with

Δk ≡
k21 − k

2
p

k2∥ − k
2
p

: (14)

Furthermore, we assume in our model that only the current
with amplitude I� is transmitted at z � �L∕2, so that the
current reflected at the antenna ends obeys

z � L0∕2: I −e−ikpL∕2 � −I∥eik∥L∕2 − rI�eikpL∕2, (15)

z � −L0∕2: I�e−ikpL∕2 � −I∥e−ik∥L∕2 − rI −eikpL∕2: (16)

Here, r denotes the reflection of the surface plasmon polar-
iton at the antenna ends and is in general a complex number.
However, following [29], we can redefine r to be real by intro-
ducing an effective antenna length L � L0 � ΔL. The relation
between reflection phase ϕr and antenna length increase ΔL is
then given by ΔL � ϕr∕kp. It has to be emphasized that the line-
current model with effective antenna length is not fully equivalent
to the one with complex reflection coefficient. This is due to the
imaginary part of kp, which results in additional artificial ab-
sorption when replacing the real antenna length by the effective
length. In the following, we will consider real r and effective
antenna length L, as it provides a better agreement with the
numerically exact results. The reason might be that the
line-current model does not properly account for radiative
losses at the antenna ends, which is counterbalanced by the
overestimation of the Ohmic losses when using the effective
antenna length.

Equations (15) and (16) straightforwardly result in

I� � I∥
reik

�
p L∕2 − e−ik

�
p L∕2

1 − r2e2ikpL
eikpL, (17)

with k�p ≡ kp � k∥. Note that kp as well as L and r are func-
tions of frequency ω. The roots of the denominator at frequen-
cies ωm provide the resonance condition for the wire antenna in
the same way as in a standard Fabry–Perot cavity [27,35]: the
real part of ωm is the resonance frequency, while −2 Im�ωm�
defines the linewidth of the resonance.

In summary, the current I�z� inside the rod antenna is
given by

I�z;ω; k∥� � −iωε0Δε�ω�Δk�ω; k∥�Î�z;ω; k∥�E inc
0 cos θ:

(18)

For brevity of notations, we have introduced here the
normalized current:

Î�z;ω; k∥� � eik∥z � Î��z;ω; k∥� � Î−�z;ω; k∥�, (19)

with Î� � exp��ikpz�I�∕I∥.
In the far-field limit, the scattered field is polarized trans-

verse to the outgoing wave vector, which means that the only
relevant component for our resonance geometry is the ϑ
component, for which we obtain [29]
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Eϑ�ρ,ϑ�≈ iZ 1k1SR
eik1ρ

4πρ
sin ϑ

Z
L∕2

−L∕2
dzI�z�e−ik1 cos ϑz

� k20ΔεΔk
eik1ρ

4πρ
sin ϑV A

�
sinc

�
�k∥ − k1 cos ϑ�

L
2

�

� Î��0�sinc
�
�kp − k1 cos ϑ�

L
2

�

� Î−�0�sinc
�
�kp � k1 cos ϑ�

L
2

��
E inc
0 cos θ: (20)

Here, we have introduced V A � LSR as the effective
volume of the antenna, sinc�x� � sin�x�∕x, and Z 1 denotes
the impedance in medium 1. According to Eqs. (4)–(6) as well
as Eq. (18), the z component of the electric field inside the
antenna is

E int
z �z� ≈ ΔkÎ�z�E inc

0 cos θ: (21)

Based on Eqs. (20) and (21), we can calculate the extinction,
scattering, and absorption cross sections as

σext � σscat � σabs, (22)

σscat �
Prad

S0
� 2πρ2

jE inc
0 j2

Z
π

0

dϑjEϑj2 sin ϑ, (23)

σabs �
Pabs

S0
≈
k1 Im�ε2�
ε1jE inc

0 j2
V A

L

Z
L∕2

−L∕2
dzjE int

z j2, (24)

where S0 � jE inc
0 j2∕2Z 1 is the time-averaged Poynting vector

amplitude of the incident plane wave. The integrals in Eqs. (23)
and (24) can be carried out numerically. Note that Eq. (20)
implies that the scattering cross section σscat is proportional
to k40V

2
A, whereas Eqs. (5) and (6) result in σabs ∝ k0V A, as

in the case of small spherical antennas, because

1

L

Z
L∕2

L∕2
dzjE int

z j2

∝
1

L

Z
L∕2

L∕2
dzjÎ�z�j2 � 1� jÎ��0�j2 � jÎ −�0�j2

� 2Re

�
Î��0�sinc

�
k−p

L
2

	
� Î −�0�sinc

�
k�p

L
2

	�

� 2Re�Î��0�Î	−�0��sinc�Re�kp�L�: (25)

B. Discussion

In the above derivations, we have made the following
approximations:

• Thin-wire approximation: Equation (5) is based on the
assumption that the wire antenna has a radius smaller than the
skin depth of the metal, so that we can assume a current inside
the antenna that does not depend on ρ. Furthermore, the thin-
wire approximation allows for the assumption that the incident
field is constant in the plane normal to the long wire axis.
However, the exact spatial dependence of the fields might have
some impact on the excitation efficiency, because the z
component of the electric field at the antenna surface might
be smaller or larger than in the center of the antenna. This also
affects the accuracy of the estimated near-field distribution
around the antenna.

• Single-mode approximation:Only the fundamental sur-
face plasmon polariton is considered as a possible mode propa-
gating along the thin wire. Higher-order surface plasmon
polaritons with field nodes in the radial or azimuthal direction
as well as leaky modes are neglected. These modes provide
additional radiative and nonradiative loss channels that are not
taken into account in the line-current model. Similarly, the
incident field not only excites currents in the form of
Eq. (6), but should contain the excitation of the other modes
as well. Consequently, the single-mode approximation results
in an incorrect estimation of the current amplitudes I� and
I∥. However, for elongated thin wires, the single-mode approxi-
mation is justified, because the fundamental surface plasmon
polariton is in this case the only bound mode with a consid-
erably large decay length compared to the antenna length. For
short antennas, however, higher-order modes become more
relevant [32,36].

• Disregard of excitation and radiation at antenna ends:
The main excitation of the surface plasmon polariton is as-
sumed to stem from the incident electric field at the surface
of the elongated rod antenna. Similarly, the radiation to the
far field is assumed to take place through the current oscillating
in the whole antenna. The accumulated charges at the antenna
ends as well as the possibility to excite the surface plasmon
polariton from these ends are neglected. This approximation
as well as all other approximations in the line-current model
fail for larger diameters, for which it will result in an inaccurate
estimation of the charge amplitude I�z� and its radiation to the
far field.

In addition, we have not yet specified the reflection ampli-
tude r and the effective antenna length L � L0 � ΔL. In the
work of Dorfmüller et al. [28], the magnitude of the reflection
coefficient is assumed to equal unity (r � 1), while ΔL is ob-
tained from fitting the line-current model to full numerical
results.

It has to be emphasized that r � 1 means neglecting the
radiative decay, i.e., the radiation damping. This is of course
a very rough approximation, since the oscillating current does
radiate to the far field. In [29], it is therefore suggested to first
calculate the so-called radiation resistance Rrad for r � 1, with

Rrad �
2P
I2max

, (26)

where P is the total emitted power and Imax is the maximum of
jI�z�j. This value can be used in order to derive a better
estimation for the reflection coefficient:

r�L0� ≈
Re�Z � − Rrad∕2
Re�Z � � Rrad∕2

≡ rapp: (27)

In this case, Z denotes the antenna wave impedance calcu-
lated from the surface plasmon polariton mode in the infinitely
long wire as

Z �
R
dxdyExH	

y − EyH	
x

j R dxdyI�z�j2 : (28)

For the effective antenna length increase, a simple approxi-
mation is given by ΔLapp � 2R [27]. Alternatively, we have
calculated the reflection coefficient r and the effective antenna
length increase ΔL of the fundamental surface plasmon polar-
iton mode at the rod antenna end using full numerical
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simulations based on the finite element method (see Fig. 3).
For that purpose, we have set up a model, in which we launch
the surface plasmon polariton at a port at the antenna end.
Perfectly matched layers ensure the appropriate boundary con-
ditions for the scattered light, and the reflection into the surface
plasmon polariton mode is derived in a second port. The
resulting reflection amplitude and effective antenna length
increase are denoted by rFEM and ΔLFEM, respectively.

Figure 4 depicts the scattering cross section of gold rod an-
tennas with a diameter of R � 10 nm, where the antenna
length is varied between 150 nm and 500 nm. The thin black
line has been calculated using the finite element method for the
full antenna, while the thick lines have been derived from the
various approximations in the line-current model. In panel (a),

we have used r � 1 in combination with the approximate
effective antenna length increase ΔLapp (magenta lines) as well
as the value ΔLFEM (green lines) extracted from the two-
dimensional finite element simulation of the reflection at
the antenna end. Panel (b) depicts the results calculated from
the approximate reflection amplitude rapp with the approximate
effective antenna length increase ΔLapp (orange lines) as well as
results that are solely based on the finite element simulation of
the reflection at the antenna end (blue lines).

It can be seen in Fig. 4(a) that the simple approximation of
r � 1 overestimates the magnitude of the scattering cross sec-
tion. Furthermore, using ΔLapp, the resonance wavelength of
the line-current model (magenta lines) is shifted compared
to the result of the full numerical simulation. The shift of
the resonance wavelength originates in the simple approxima-
tion for the effective antenna length. The mismatch in reso-
nance wavelength almost vanishes when using ΔLFEM (green
lines). In order to obtain a better agreement between the mag-
nitude of the scattering cross section from the line-current
model and the full numerical simulations, one has to replace
r � 1 by rapp from Eq. (27) or rFEM from the finite element
simulation for the reflection at the antenna end. When com-
bining rapp with ΔLapp [orange lines in Fig. 4(b)], the magni-
tude of the scattering cross section is reduced compared to
Fig. 4(a), while the resonance wavelength is shifted. This mis-
match in resonance wavelength vanishes when combining rapp
with ΔLFEM (not shown here). However, taking the maxima of
the scattering cross sections as a guide to the eye, one can see
that rapp underestimates the magnitude of the scattering cross
section. In contrast, the numerically derived magnitude rFEM of
the reflection coefficient and the resulting effective antenna
length LFEM yield an excellent agreement between the line-
current model and full numerical simulations, as seen for
the blue lines in Fig. 4(b).

Note that the dimensions of our elongated rod antennas
with a radius of R � 10 nm are in a regime where the thin-
wire approximation and the single-mode approximation can
be applied. For radii larger than the skin depth, the agreement
between the line-current model and full numerical simulations
becomes worse, so that the line-current model can be used only
for qualitative predictions, as shown in [23].

3. APPLICATIONS

A. Wavelength Scaling

Whenever it is desired to predict the wavelength scaling behav-
ior of antenna properties such as maximum scattering cross sec-
tion or enhancement of the near fields, numerical simulations
rely on solving Maxwell’s equations repeatedly. Hence, full-field
simulations become rather inefficient, while the line-current
model provides the required results in significantly less calcu-
lation time. As an example, we derive here the wavelength scal-
ing of the magnitude of the electric field in the vicinity of the
wire antenna at the fundamental resonance, which is important
for sensing applications, such as antenna-assisted surface-
enhanced infrared absorption spectroscopy [23,25].

Near resonances, jÎ�j ≫ 1, so that Eq. (19) can be
written as
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crease ΔLapp (magenta lines) and numerically calculated effective
antenna length increase ΔLFEM (green lines) at the antenna ends with-
out radiation damping (r � 1); (b) approximate effective antenna
length increase ΔLapp and radiation damping based on the reflection
magnitude rapp (orange lines) as well as numerically calculated effective
antenna length increase ΔLFEM and radiation damping based on rFEM
(blue lines).
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Î�z;ω; k∥� ≈ Î��z;ω; k∥� � Î −�z;ω; k∥� ≡ Î p�ζ;ω; k∥�,
(29)

which is a function of ζ ≡ kpz. This functional behavior in the
z direction due to the dominating surface plasmon polariton is
valid even beyond the limits of the line-current model when
being close to a resonance. Therefore, we may approximate
the electric field inside the layer including the weak radial
dependence as

E int
z �ρ, z� ≈ E int

0 J0�κ2ρ�f �kpz�, (30)

E int
ρ �ρ, z� � 1

κ22

∂E int
z

∂ρ∂z
� −E int

0

kp
κ2

J1�κ2ρ�
∂f
∂ζ

, (31)

where f specifies the z dependence of the fields. For small
values of ρ, the z component is roughly constant while the
ρ component is much smaller for kpρ ≪ 1, thus revealing
the basic assumption of the line-current model:

E int
z �ρ, z� ≈ E int

0 f �kpz�, (32)

E int
ρ �ρ, z� ≈ −E int

0

kpρ
2

∂f
∂ζ

: (33)

Using Eqs. (21) and (29) in Eq. (33) in combination with
the boundary condition for the radial field component, the ρ
component in the exterior yields

E ext
ρ �ρ, z� ≈ ε2

ε1

kpR
2

∂I p
∂ζ

H �1�
1 �κ1ρ�

H �1�
1 �κ1R�

ΔkE inc
0 cos θ: (34)

The z component in the exterior is approximately given by

E ext
z �ρ, z� ≈ −Î p�ζ;ω; k∥�

H �1�
0 �κ1ρ�

H �1�
0 �κ1R�

ΔkE inc
0 cos θ: (35)

It turns out that j∂Îp∕∂ζj ≫ j2ε1Î p∕kpRε2j, so that the
dominant field component in the exterior is the ρ component.

As mentioned above, the strength of the near field is impor-
tant for antenna-assisted surface-enhanced infrared absorption
spectroscopy. In this case, a thin layer of molecules is placed
directly on the antenna surface. If the layer is thinner than
the decay length of the surface plasmon polariton outside
the antenna, the ρ component in Eq. (34) is roughly constant
in the radial direction. Defining V m as the volume of the mol-
ecules, we thus obtain for the normalized near-field intensity in
the volume of the moleculesZ

V m

dV




 Eρ�ρ, z�
E inc
0 cos θ





2 � jε2kpRj2
4ε21

jΔkj2SR
Z

L∕2

−L∕2
dz




 ∂Îp∂ζ






2

:

(36)

In Fig. 5, we are displaying the result of Eq. (36) at the
resonance wavelength for varying antenna lengths and a fixed
radius of 10 nm (blue line). The prediction of the line-current
model agrees well with finite element results of the correspond-
ing antenna geometries (orange dots). For such thin rod anten-
nas, the overall scaling follows a λ1.2 scaling (thin black dashed
line), while there is a λ3 scaling for thicker antennas (for details,
see [23]) with a radius of 100 nm that is well above the
skin depth of our metal (25–27 nm in the wavelength range
of interest). Interestingly, the line-current model allows for

predicting the λ3 scaling for thicker antennas, but it can no
longer predict the magnitude of the field enhancement (not
shown here).

B. Third-Harmonic Generation

The full numerical simulation of third-harmonic generation is
rather time-consuming, even in the undepleted pump approxi-
mation [37], where any back-action of the field at the third
harmonic to the fundamental wavelength is neglected. The rea-
son is that the wavelength at the third harmonic is one third of
the incident wavelength, requiring a very fine mesh to resolve
all features in the electromagnetic near fields. In the line-
current model, all numerical simulations are effectively two-
dimensional, thus reducing the numerical effort significantly.
The third-harmonic intensity can be calculated using the reci-
procity principle [38]. In a first step, the electric fields are cal-
culated at the fundamental wavelength, i.e., at frequency ω.
This provides the nonlinear polarization PTH at the third har-
monic 3ω, which acts as a source for the emitted electric field
ETH at the third harmonic. Given another source j 0 that
generates a field E 0, the reciprocity theorem statesZ

dV j 0 · ETH � −i3ω
Z

dV PTH · E 0: (37)

Assuming j 0 � ĵδ�r − r 0� with jĵj � 1 and r 0 being located
in the homogenous surrounding of the wire antenna, the
analytic solution for the Green’s dyadic in homogeneous space
results in

E 0
ext�r� � ik1Z 1

�
ĵ
�
1� ik1jRj − 1

k21jRj2
	

� R�R · ĵ� 3 − 3ik1jRj − k
2
1jRj2

k21jRj4
�
eik1jRj

4πjRj

≈ ik1Z 1 ĵ
eik1r

0

4πr 0
e−ik1 cos ϑ 0z ≡ ik1Z 1 ĵ

eik1r
0

4πr 0
e−ik

0
∥z , (38)

where R � r − r 0, and we have used the thin-wire approxima-
tion as well as r 0 ≫ r. The field in Eq. (38) acts as an incident
field at frequency 3ω, which can be put into the line-current
model in order to derive the internal field occurring in Eq. (37).

analytical model
1.2

FEM

2 4 6 8 10 12
0

2
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|
E|

detargetnI
2

). u.a(

Fig. 5. Wavelength scaling of the near-field intensity around an
elongated rod antenna with a radius of 10 nm. The blue curve has
been obtained from the line-current model by evaluating Eq. (36)
at the resonance wavelength for varying antenna lengths. The results
are in good agreement with the numerical results derived by finite
element modeling of the corresponding antenna geometries (orange
dots). The thin black dashed line depicts a λ1.2 scaling as a guide
to the eye.
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In particular, we have to replace E inc
0 cos θ in Eq. (21) by

E 0
ext · ẑ exp�ik 0∥z�, which provides for ĵ⊥r 0 the transverse field

components emitted at the third harmonic:

ĵ · ETH�r 0� ≈ �3k0�2
eik1�3ω�r

0∕c

4πr 0
χ�3�

× �Δk�ω�E inc
0 cos θ�3Δk�3ω� sin ϑ 0

×
V A

L

Z
L∕2

−L∕2
dz�Î�z;ω; k∥��3Î�z; 3ω; −k 0∥�: (39)

The integral in Eq. (39) can be easily evaluated. The third-
harmonic intensity emitted in a certain direction and polariza-
tion is then proportional to jĵ · ETHj2.

Since Eq. (17) enters in Î�z;ω; k∥� and Î�z; 3ω; −k 0∥�, we
deduce that the third-harmonic intensity becomes significantly
increased due to a resonance at the fundamental harmonic, as
Î�z;ω; k∥� contributes with the third power in Eq. (39). A
resonance at the third harmonic increases the third-harmonic
intensity as well, but it only enters with first power in
Î�z; 3ω; −k 0∥�. These findings are confirmed in Fig. 6, where
we calculated the third-harmonic intensity emitted in the x
direction and z polarization using Eq. (39) for different antenna
lengths (blue lines). Black arrows indicate one third of the res-
onance wavelength of the fundamental resonance at ω1,
whereas red arrows depict the position of the third-order res-
onance at ω3. For longer antennas, these resonances become
more and more matched, i.e., 3ω1 ≈ ω3.

Neglecting the frequency dependence of χ�3�, the overall
scaling of the third-harmonic intensity follows a λ−4 behavior,
as shown by the orange line in Fig. 6. The reason is that the
integral in Eq. (39) is roughly constant over frequency. Thus,
the only frequency scaling of the field comes from the prefactor
ω2, so that the third-harmonic intensity scales with ω4 ∝ λ−4.

In its range of applicability, the generalized Miller’s rule [39]
provides

χ�3��3ω� ∝ χ�1��3ω��χ�1��ω��3: (40)

For a Drude metal with χ�1��ω� ∝ ω−2, we thus obtain that
χ�3��3ω� ∝ ω−8. The third-harmonic intensity of the gold rod
antenna is proportional to ω4 times the square value of χ�3�, so
that it scales as ω−12 ∝ λ12. Hence, the third-harmonic inten-
sity grows with antenna length, until Miller’s rule breaks down.

4. SUMMARY

We have shown that, within the single-mode approximation,
the line-current model is capable of predicting the optical prop-
erties of thin elongated metal antennas. This requires, however,
to accurately know the reflection coefficient of the propagating
surface plasmon mode at the antenna ends. Simple models for
the reflection coefficient fail, while we can calculate it efficiently
by numerical approaches, such as the finite element method. It
has to be emphasized that the resulting numerical effort is sig-
nificantly lower than that required to simulate the optical prop-
erties of the full three-dimensional antenna, because the
required numerical calculations for the line-current model
are effectively two-dimensional. Most importantly, the line-
current model allows for covering a large range of antenna
length with negligible computational effort, which can be used
for predicting the wavelength scaling behavior of certain reso-
nant properties, such as the near-field enhancement as well as
the third-harmonic intensity. For the latter, we obtain a λ−4

scaling from the line-current model when neglecting the fre-
quency dependence of χ�3�. Combining this result with the
generalized Miller’s rule, we obtain an overall λ12 scaling of
the third-harmonic intensity.
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