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ABSTRACT: We analyze and optimize the performance of
coupled plasmonic nanoantennas for refractive index sensing.
The investigated structure supports a sub- and super-radiant
mode that originates from the weak coupling of a dipolar and
quadrupolar mode, resulting in a Fano-type spectral line shape. In
our study, we vary the near-field coupling of the two modes and
particularly examine the influence of the spectral detuning
between them on the sensing performance. Surprisingly, the case
of matched resonance frequencies does not provide the best
sensor. Instead, we find that the right amount of coupling
strength and spectral detuning allows for achieving the ideal
combination of narrow line width and sufficient excitation
strength of the subradiant mode, and therefore results in
optimized sensor performance. Our findings are confirmed by
experimental results and first-order perturbation theory. The latter is based on the resonant state expansion and provides direct
access to resonance frequency shifts and line width changes as well as the excitation strength of the modes. Based on these
parameters, we define a figure of merit that can be easily calculated for different sensing geometries and agrees well with the
numerical and experimental results.
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In the past few years, localized surface plasmon resonances
have been intensely investigated with respect to their sensing

capabilities.1−9 The principle of plasmonic sensors is based on
the strong dependence of the resonance frequency on the
dielectric environment. Even tiny changes of the material
composition and, therefore, the local permittivity of the
surroundings lead to resonance shifts that can be detected via
optical readout. This universal mechanism can be utilized to
detect a broad range of different analytes, such as gases, liquids,
or biomolecules.10−15 Obviously, with the ultimate goal of
detecting single molecules in mind, optimization of such
sensors is a major challenge in this field. Besides influences such
as the material composition16,17 and efficient analyte delivery,18

the chosen geometry of the plasmonic nanostructures has a
major impact on the sensing performance. Changing the
geometry, the properties of the plasmonic resonances, as well as
their interaction strength with the environment can be
engineered.
Fano resonances in multiparticle systems with complex

spectral features due to the interplay of different modes are of

particular interest for sensing applications.19−23 The use of
subradiant modes allows decreasing the line width of the
generally broad and lossy dipolar plasmonic resonances. Shifts
of the corresponding resonances result in significant trans-
mittance differences at a fixed frequency due to the steep
spectral slopes. Thus, such resonances are superior to the usual
dipolar resonances of simple plasmonic nanostructures.
However, it is crucial that the subradiant modes couple
efficiently to the far field. This can be achieved by controlling
the coupling of an optically active resonance with a broad
resonance line width to an optically inactive mode that does not
emit light to the far field by itself. The coupling strength can be
controlled by adjusting the overlap of the resonant field
distributions. The coupled system exhibits a sub- and a super-
radiant mode, in which the radiative lifetime of the subradiant
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modes decreases with increasing coupling strength. Gallinet et
al. have studied the influence of this coupling strength and the
excitation efficiency of the modes (defined as the contrast of
the spectral line shape) on the sensing performance.24 They
investigated a system, in which a sub- and super-radiant mode
are matched in resonance frequency in the weak coupling
regime. They determined an ideal coupling strength for
achieving the optimal sensing performance, which turned out
to be close to the transition from the weak to the strong
coupling regime.
In our work, we specifically analyze the spectral detuning of

the involved modes. This approach extends the parameter
space and allows for improvements beyond the capabilities of
exploring the coupling and excitation strengths alone. We use
numerical calculations as well as first-order perturbation theory
to optimize the sensing performance of a Fano-resonant
system. The numerical calculations have been carried out by the
Fourier-modal method with adaptive spatial resolution and the
scattering matrix formalism.25,26 Our theory is validated by
comparison with experimental measurements.
The first-order perturbation theory is based on the resonant

state expansion,27−31 and allows for predicting resonance
frequency and line width changes as a function of the refractive
index in the sensing area.30−32 It should be emphasized that our
theory differs in some aspects from previous work in this
field.33−35 In particular, our approach is based on an analytical
normalization for the resonant field distributions,30,31 and our
perturbation equation is not restricted to resonances with a
high quality factor, as shown in ref 32.
Particularly, we calculate in this work the excitation strength

from a first-order perturbation theory,36 which allows us to
define a figure of merit that accounts for the mode sensitivity
(i.e., the resonance frequency shift), the resonance line width,
and the excitation strength. Our figure of merit agrees well with
the numerical and experimental results for the maximum
transmittance difference. It can be calculated for any resonant
photonic system, thus providing a direct measure for the
sensing performance that can be easily calculated, analyzed, and
optimized.

■ RESULTS AND DISCUSSION

An ideal system for our study is the structure depicted in Figure
1a, because it allows for good control of the single parameters,
and it is well-described in the literature.37,38 It consists of three
gold nanoantennas repeated periodically in the x and y
direction with period of 700 nm (in each direction). At the
top of the system are two parallel antennas, which are exposed
to the surrounding analyte. The third antenna is separated
vertically by a spacer layer of 50 nm thickness and oriented
perpendicular to the top antennas. In the numerical
calculations, we modeled the gold as a Drude metal with
plasma frequency 1.3024 × 1016 rad/s and collision frequency
1.6 × 1014 rad/s. The lower nanoantenna is 290 nm long, 75
nm wide, and 40 nm thick. The long antenna axis is oriented in
the x direction (see Figure 1a). The antenna is embedded in a
polymer (refractive index n = 1.55) and located 70 nm above a
substrate with refractive index n = 1.523. The fundamental
plasmon resonance of this antenna can be excited by incident
light linearly polarized along the long antenna axis. By
symmetry breaking37 it can couple to a quadrupolar mode
formed in two nanoantennas on top of the polymer with
dimensions of 305 nm × 75 nm × 40 nm and a horizontal

separation of 140 nm. The quadrupolar mode is composed of
the antiparallel dipole moments in the two separate antennas.
The coupling of the dipolar mode and the quadrupolar mode

results in the formation of two hybridized modes that
determine the optical response of the system. In the weak
coupling regime with either large spectral detuning of the
uncoupled modes or small spatial overlap of the modes’
resonant field distributions, we obtain a sub- and a super-
radiant mode with a narrow and a broad line width,
respectively. In contrast, the hybridization results in two
modes with comparable line width in the strong coupling
regime. Displacing the dipole antenna from a symmetric
position allows for tuning of the coupling between the antennas
in the top and bottom layer.37 In the symmetric position, the
dipolar and the quadrupolar modes are uncoupled, so that only
the dipolar mode can be excited by far-field incidence. The
resonance frequency of the quadrupolar mode correlates with
the lengths of the antennas in the top layer. Adjusting the
dimensions of those antennas allows for detuning the
resonances with little influence on other parameters. Note
that the resonant field distributions of the hybridized modes

Figure 1. (a) General sensing scheme: Refractive index changes result
in resonance frequency shifts that can be detected optically. The
investigated structure is a periodic array (square lattice in the xy plane
with period P) of coupled plasmonic nanoantennas. The unit cell
consists of a layer with a single x-oriented nanoantenna below a spacer
layer (green) and a pair of two y-oriented nanoantennas above that are
in direct contact with the analyte (light and dark blue). In the
considered frequency range, the layer with the single nanoantenna
provides a dipolar plasmonic resonance, while the layer with the pair of
nanoantennas supports a quadrupolar resonance. The coupling
strength between these two resonances can be controlled by displacing
the single nanoantenna in the y direction by the shift parameter s (s =
0 nm is defined as the symmetric configuration with mirror symmetry
in y direction), resulting in the characteristic Fano-type spectra shown
in the top-right panel. (b) Spectral evolution of the transmittance at
normal incidence of x-polarized plane waves for varying displacements
in the case of matched resonance frequencies (for s = 0 nm) and (c)
line width of the two modes. The gray shaded region denotes the
regime of weak coupling.
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consist in general of a superposition of a quadrupolar mode
pattern around the antenna pair on top and a dipolar mode
pattern in the vicinity of the single antenna underneath. The
specific strength of the dipolar and the quadrupolar
contribution depends on the quadrupole length and the
displacement (see Supporting Information).
As in all plasmonic systems, the applicability as a sensor relies

on the presence of a refractive index change in the vicinity of
the metallic nanoantennas and its influence on the resonances,
which can be monitored via the optical far-field spectrum.
Modifying the refractive index of the analyte leads to a shift Δν
of the spectrum, which implicates a transmittance or intensity
difference ΔT at a given frequency point. In contrast to similar
structures discussed in purely theoretical studies where the
analyte surrounds all antennas, our design has the advantage of
a relatively straightforward experimental realizability.
In experiment, the analyte layer is several microns thick,

whereas we assume a thickness of 150 nm in numerical
calculations for the sake of simplicity. Previous analysis has
shown that this thickness is large enough to span over the
electromagnetic near-field region,30 so that we can accurately
predict the performance of the experimental design as a
resonantly enhanced refractive index sensor. The reference
refractive index of the analyte is n = 1.32, corresponding to
water in the investigated frequency range.
Figure 1b,c shows the transmittance spectra and line width of

the well-investigated case where the resonance frequencies of
the dipolar and quadrupolar mode match in the absence of a
coupling mechanism. The normally incident light is linearly
polarized with the electric field oscillating parallel to the long
axis of the lower antenna, i.e., along the x direction. In the weak
coupling regime, i.e., small displacement from the symmetric
position, the splitting of the modes is small, while they clearly
differ in line width. This regime is suggested by Gallinet et al.
for sensing applications.24 For increasing displacement, which
leads to an augmented overlap of the resonant near-fields and
hence strong coupling, two distinct features with similar line
width arise in the spectrum. In the following we will label the
high frequency mode “A” and the low frequency mode “B”.
As an easily accessible and experimentally relevant value, the

maximum transmittance difference is plotted in Figure 2a for
the case discussed above. The values are obtained by calculating
two full spectra for a given refractive index n and n + Δn,
respectively. The spectra are subsequently subtracted, normal-
ized by Δn, and the maximum value for each resonance feature

is plotted over the corresponding displacement, i.e., coupling
strength. A selection of transmittance curves and differences is
provided in the Supporting Information. Figure 2a indicates
that for both resonance features the values strongly increase in
the weak coupling range, but have their optimum in the
intermediate coupling range. The maximum displacement
shown here corresponds to the dipole antenna sitting at the
end of the quadrupole antennas.
As both resonance features behave quite similarly in this

situation, we now start to detune the resonance frequency of
the quadrupolar mode with respect to the dipolar mode. To
keep the coupling in the intermediate range, we fix the
displacement at half the distance between the symmetric case
and the end of the quadrupole antenna pair (denoted as
displacement factor 0.5), while varying the quadrupole antenna
length. The result is depicted in Figure 2b. The dashed line at
305 nm quadrupole length represents the case of matched
resonance frequencies. It is obvious that the detuning plays an
important role when searching the ideal configuration for
sensing applications, as the maximum transmittance difference
exhibits distinct variations. When decreasing the quadrupole
antenna lengths, the values strongly increase for mode A while
they decrease for mode B. For longer quadrupole antenna
lengths the behavior is inverted, but less pronounced. The ideal
conditions are reached for a quadrupole length of 265 nm. In
contrast to the coupling induced by the spatial configuration,
this frequency detuning can be regarded as spectral coupling.
To directly compare the case of matched resonance frequencies
and the optimized case, we again sweep the displacement, with
the resonance frequency of the quadrupolar mode detuned to
higher frequencies (Figure 2c). We observe that the two modes
now behave much more differently and provide a clearly
increased transmittance difference for mode A. Moreover, this
configuration is very robust against changes in the spatial
arrangement, as the high transmittance difference values can be
obtained in a broad range of displacement values.
As the refractive index changes in the analyte material are

rather small, we can use first-order perturbation theory in order
to predict the influence of the refractive index changes on the
optical response of the coupled nanoantennas. The advantage
of first-order perturbation theory is that we do not need to
repeatedly solve Maxwell’s equations for different frequencies
and refractive indices. Instead, we only have to derive the
relevant resonant state at complex eigenfrequency νm (real part
is resonance frequency, while −2Im νm denotes the resonance

Figure 2.Maximum absolute value of the normalized transmittance difference (|ΔT/Δn|) derived from numerically calculated spectra for (a) varying
displacement, i.e., coupling strength, in the resonance-matched case, (b) varying quadrupole length, i.e., spectral detuning of the resonances, and (c)
varying displacement in the ideally detuned case. Dashed lines indicate the intersection with neighboring graphs.
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line width) and its normalized field distributions Em. For details
on the numerical calculation of the resonant states, see ref 30
and references therein. The dependence of the refractive index
change Δn in the analyte volume a on the complex
eigenfrequency is then approximately given by30

∫ν ν+ Δ ≈ − Δ
⎡
⎣⎢

⎤
⎦⎥n n n n n V nE r( ) ( ) 1 d ( ; )m m m

2

a (1)

Strictly speaking, eq 1 is only valid at normal incidence,
which is the case that we consider here. The more general case
of inclined incidence is described in ref 31. The first-order
perturbation theory is valid whenever the refractive index
changes are small and the distance to other resonances on the
complex frequency plane is sufficiently large. Furthermore, it
requires a correct normalization of the resonant field
distribution.27,30,31,39,40 We are using here the analytical
normalization derived in refs 30 and 31.
The normalization of the resonant fields implies that 1/

Em
2 (r;n) has the units of volume. As shown in the Supplemental

Material of ref 30, the term 1/Em
2 (r;n) with the correctly

normalized resonant field is one-third of the so-called mode
volume39,41,42 averaged over all possible orientations of a
dipolar emitter placed at position r. It has to be emphasized
that in general the mode volume is a spatially dependent
quantity that depends on the orientation of the dipole moment
as well as on the local field strength of the normalized field.
Similarly, the mode sensitivity as the dependence of the
eigenfrequency νm on the refractive index change Δn is
according to eq 1 proportional to the field strength of the
correctly normalized fields in the analyte volume. This means
that for achieving a large mode sensitivity, the analyte volume
must include regions with large magnitude of Em

2 (r;n).
Let us now consider the excitation strength of a resonant

state. Formally, we can decompose the total electric field inside
the system of coupled nanoantennas into an incident and a
scattered field.36 Adapting ref 36 to our normalization, the
scattered near field can be written as

∑ ν= bE E( )
m

m mscat
(2)

with the expansion coefficient

∫

ν ν
ν ν

ε ν ε ν ν

= −
−

· −

ν≡

  

b

V E r r r E r

( )
2( )

d ( ) [ ( ; ) ( ; )] ( ; )

m
m

m

I

BG inc

( )m

(3)

where the incident field Einc is a solution of Maxwell’s equations
for the background permittivity εBG in the absence of the
nanoantennas. In our case, εBG consists of the substrate, the
polymer surrounding the single nanoantenna, the analyte, and
the superstrate. The magnitude of bm reaches its maximum
around Re νm, i.e.,

ν ν| | ≈ | |b Q Imax ( ) (Re )m m m m (4)

with the quality factor Qm = Re νm/2Im νm. Therefore, we
denote |Im(Re νm)| as the excitation strength of the mode.
In Figure 3a,b the parameters derived from the first-order

perturbation theory are plotted for varying detuning of the
quadrupole antennas. The absolute frequency shift normalized
to the refractive index difference (i.e., |Re ∂νm/∂n|) decreases
for mode A and increases for mode B for increasing quadrupole
antenna length. The resonance line width and excitation
strength, instead, exhibit an inverse trend. They both increase
with the antenna length for mode A and decrease for mode B,
yielding a sub- and a super-radiant mode.
To compare the performance of different sensing config-

urations, the so-called figure of merit (FOM) was introduced
by Sherry et al.43 It is calculated as the ratio of the sensitivity
and the resonance line width. Figure 3c depicts this FOM,
calculated from the values obtained by our first-order
perturbation theory as orange lines. As for mode A and short
quadrupole antenna lengths the sensitivity is high and the line
width becomes smaller and smaller, the FOM inordinately
increases. However, those high values are of no advantage as
the excitation strength of the resonance also strongly decreases
in this regime. Therefore, the standard FOM is not a good
measure for finding the ideal sensing configuration. Gallinet et
al. have also identified this issue and proposed an approach to
include the contrast of the line shape into the figure of merit.44

This takes into account that narrow line widths often come
along with less modulation. Based on the same consideration
we thus include the excitation strength in the figure of merit
and calculate

Figure 3. Results of first-order perturbation theory corresponding to Figure 2b, the case of varying quadrupole length (spectral resonance detuning).
(a) Resonance frequency shift, (b) resonance line width and excitation strength, and (c) classical figure of merit (FOM, orange) as well as our FOM+

including the excitation strength (black).
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≡
×+FOM

[sensitivity] [excitation strength]
[resonance linewidth] (5)

with the sensitivity being Re ∂νm/∂n. Mathematically, this
definition directly follows from differentiating eq 4 with respect
to n when assuming that the refractive index dependence of the
excitation strength divided by the resonance line width is
negligible. Hence, a large value of FOM+ is equivalent to a
strong dependence of the expansion coefficient bm on the
refractive index in the analyte volume. The FOM+ is shown in
Figure 3c (black lines). It exhibits a distinct maximum for both
modes and perfectly resembles the behavior retrieved from the
full spectral calculations (cf. Figure 2b).
The FOM+ allows us to analyze the individual contributions

for achieving an optimal sensing performance. First, the
frequency shift is dominated by the strength of the resonant
near fields in the sensing region. Analysis of the modes
(Supporting Information) reveals that mode A is dominated for
shorter quadrupole antenna lengths by a strong quadrupolar
near-field pattern in the vicinity of the analyte material. Thus,
the observed frequency shifts are large, while they decrease for
longer quadrupole antenna lengths, where the near fields are
dominated by the dipolar pattern around the single antenna
buried in the polymer. In contrast, mode B changes its
character form predominantly dipolar to quadrupolar, thus
resulting in an increase of frequency shift for longer quadrupole
antenna lengths.
The other two quantities entering the FOM+ are the

resonance line width and the excitation strength. They behave

rather similar (see Figure 3b). This is intuitively clear, because
the radiative part of the line width is related to the coupling of
the resonant state to the far field, which in turn is related by
reciprocity to the excitation of the resonant state. The impact of
resonance line width and excitation strength on the FOM+,
however, is exactly opposite: A larger excitation strength is
superior for a better sensing performance and therefore
increases the FOM+, while a larger line width makes the
spectral feature associated with that resonance less steep and
thus decreases the FOM+. The maximum of the FOM+ can
therefore be attributed to the following competing effects: On
one hand, the resonance line width of mode A becomes smaller
and the frequency shift larger for shorter quadrupole antenna
length, because the character of mode A becomes more and
more quadrupolar. On the other hand, this means that the
dipolar contribution to this mode decreases, thus lowering the
excitation strength. The maximum in FOM+ and in the
transmittance dif ference (Figure 2b) is therefore achieved due to
the optimal trade-of f between excitation strength, line width, and
f requency shif t.
The same analysis was carried out for the case of varying

displacement. In contrast to the previous case, here mode A
shows a much higher sensitivity and smaller line width than
mode B over the entire sweep range (Figure 4a,b). The
excitation strength, however, is again crucial for finding the
ideal sensing configuration. Without considering it (FOM,
orange lines), small displacements seem to be clearly favorable.
Only due to the excitation strength, the FOM+ resembles the
results of the full numerical calculations (cf. Figure 2c).

Figure 4. Results of first-order perturbation theory corresponding to Figure 2c, the case of varying displacement (coupling strength). (a) Resonance
frequency shift, (b) resonance line width and excitation strength, and (c) classical figure of merit (FOM, orange) as well as our FOM+ including the
excitation strength (black).

Figure 5. Experimental results of the optimized structure for increasing displacement (coupling strength). (a) Transmittance spectra and scanning
electron microscope images of the associated structures. (b) Normalized transmittance difference. (c) Maximum values of the normalized
transmittance difference plotted over the corresponding numerical calculations.
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Additionally, the optimized detuned structure with a
quadrupole length of 265 nm was investigated experimentally.
Fabrication of the samples was realized by a standard multilayer
electron-beam lithography process with positive resist
(PMMA) on a glass substrate. A 70 nm layer of polymer
(PC403) was spin-coated and hardened prior to processing the
dipole antennas (including markers for later alignment) in the
first layer. Subsequently, another layer of PC403 was spin-
coated to flatten the surface and to ensure the vertical spacing
of the layers. The quadrupole antennas, which are exposed to
the analyte solutions, were then written in a second exposure
process on top of the cured polymer. Precise alignment with
respect to the lower layer is ensured with the aid of the
previously defined markers. Five different displacements,
ranging from the symmetric case to large displacements, were
realized in 100 × 100 μm2 sized arrays. Scanning electron
microscope images (Figure 5) exemplarily depict the fabricated
structures. Measurements were conducted in a FTIR
spectrometer using a custom-made microfluidic silicone sensor
cell, which features a 70-μm-thick channel with inlet and outlet
tubing. A constant flow of analyte solution was provided by
placing a reservoir above and the outlet in a beaker below the
cell. Transmittance spectra for pure water (n = 1.32) and a 1:1
mixture of water and ethylene glycol (n ≈ 1.37) were recorded
with normally incident light polarized along the long axis of the
lower antenna. The spectra clearly illustrate how the additional
resonance evolves with increasing displacement (Figure 5a).
Subtracting the corresponding spectra for the different analyte
solutions exhibits the respective dispersive features (Figure 5b).
For the feature at the low frequency mode, the absolute
transmittance difference just increases slightly with higher
displacement values. For the feature at the high frequency
mode, it increases considerably with the displacement. The
extracted maximum values are plotted in Figure 5c and agree
well with the numerical calculations (gray lines).

■ CONCLUSION

Among the variety of plasmonic structures, those exhibiting
Fano resonances have an intrinsic advantage in sensing
applications. Their narrow line width compared to plain dipolar
resonances generally provides steeper flanks in the far-field
spectra and hence larger intensity differences for small
refractive index changes in the sensing volume. Still, there is
a potential for further optimization. We found that besides the
near-field coupling of quadrupolar and dipolar resonances, the
spectral detuning between them plays an important role. With
the right amount of coupling strength and spectral detuning, it
is possible to find the ideal combination of narrow line width
and sufficient excitation strength. First-order perturbation
theory allows calculating a figure of merit that is able to
predict the intensity differences retrieved from numerical
calculations and experiments from the sensitivity, the resonance
line width, and the excitation strength. The results are
supported by good agreement between numerical calculations,
perturbation theory, and measurements, all applied to the exact
same system.
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