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Beam switching and bifocal zoom lensing using active
plasmonic metasurfaces

Xinghui Yin1,2, Tobias Steinle1, Lingling Huang3, Thomas Taubner4, Matthias Wuttig4, Thomas Zentgraf5

and Harald Giessen1

Compact nanophotonic elements exhibiting adaptable properties are essential components for the miniaturization of powerful

optical technologies such as adaptive optics and spatial light modulators. While the larger counterparts typically rely on mechan-

ical actuation, this can be undesirable in some cases on a microscopic scale due to inherent space restrictions. Here, we pre-

sent a novel design concept for highly integrated active optical components that employs a combination of resonant plasmonic

metasurfaces and the phase-change material Ge3Sb2Te6. In particular, we demonstrate beam switching and bifocal lensing,

thus, paving the way for a plethora of active optical elements employing plasmonic metasurfaces, which follow the same design

principles.
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INTRODUCTION

Form follows function1—this principle heeded by generations of
modernist architects is not only a guideline, but rather the unyielding
maxim dictated by Snell’s law of refraction2 when it comes to lens
design3. The curvatures of material interfaces used to craft wave fronts
closely follow from the intended function the optical element is to
perform. Active optical elements, then, naturally carry out their task by
reshaping themselves according to the changing requirements they
have to fulfill in different situations. The lens of the human eye, for
example, increases its curvature when adapting from looking at a
distant object to one close by. Similarly, deformable mirrors used in
astronomy reconfigure their surface to compensate for wave front
distortions stemming from atmospheric disturbances. However, with
the advent of metasurfaces—artificial subwavelength thickness materi-
als—and moreover the formulation of a generalized Snell’s law4,5,
form has detached from function. A metasurface lens6–12 can be
completely flat, yet impart a spatially varying phase profile through
abrupt phase jumps and thus shape the wave front of a transmitted
light wave. Therefore, optical elements utilizing active metasurfaces
can accomplish varying functions exploring entirely different
approaches that are geometrically static, which is a key advantage of
metasurface based optical components13,14.
A field closely linked to metasurfaces is plasmonics, the study of

light interaction with free electrons in a metal, which has already
realized active designs that do not rely on mechanical deformation.
Moreover, graphene15–18, injection of free carriers in
semiconductors19–23, phase transition materials such as VO2

24–26,

gallium27,28, yttrium-hydride29 magnesium30, and the phase-change
material GeSbTe (GST)31–34 have been successfully employed to
achieve active plasmonics. In particular, GST has also been used on
its own to demonstrate reconfigurable amplitude masks for compact
optical components35 that retain their functionality without external
stimuli. This is possible due to the fact that phase-change materials
possess phases that are metastable at room temperature.

MATERIALS AND METHODS

Metasurface fabrication
Beam-switching and bifocal lensing concepts are demonstrated using
metasurface nanostructures that are fabricated on top of a 50 nm
GST-326 film that was DC-magnetron sputter-deposited with a
background pressure of 2 × 10− 6 mbar and 20 sccm Ar flow followed
by sputtering of a 15 nm protective layer of ZnS:SiO2.
Subsequently, the gold nanostructure metasurface was prepared

using electron beam lithography employing a polymethylmethacrylate
(PMMA) double layer resist, where the first layer is 100 nm 3.5%
200K PMMA and the second layer 100 nm 1.5% 950K PMMA. The
resist was baked for 2 min at 120 °C after each layer. After develop-
ment in 3:1 MIBK:isopropyl alcohol, 2 nm of chromium followed by
40 nm of gold were thermally evaporated and a lift-off was carried out.

Simulation
The simulations were carried out using finite-difference time-domain
Solutions by Lumerical Inc. with periodic boundary conditions and
perfectly matched layers for the beam switching and bifocal lens
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metasurfaces respectively. The metasurface was placed on a CaF2
substrate with 1.47 refractive index followed by either 50 nm of a-
or c-GST respectively (refractive index data from Ref. 32) and 15 nm
of ZnS:SiO2 with refractive index 2. We used RCP plane wave
excitation centered at 3.1 μm and evaluated the field intensity of
LCP light behind the metasurface.

Experimental setup for measuring beam switching concept
metasurface
The optical properties of the beam steering metasurface were
measured using a home-built master-oscillator-parametric-amplifier
(MOPA)36 operating at 1033 nm pump wavelength and 3100 nm idler
wavelength, which was used to characterize the active metasurface.
The collimated beam is linearly polarized and was passed through a
quarter waveplate before passing through the metasurface and
impinging on a pyroelectric array camera (Pyrocam III, Ophir
Photonics) (cf. Supplementary Fig. S1).

Experimental setup for measuring bifocal lens concept metasurface
We used the same home-built MOPA light source set to 3100 nm to
characterize the varifocal lens. A quarter waveplate was introduced to
the beam path before the metasurface to generate right-handed
circularly polarized light. After passing through the sample, the light
was collected with a 20× objective and sent through a second quarter
waveplate and linear polarizer set to transmit only left-handed
circularly polarized light. Subsequently, the resulting two-dimensional
(2D) intensity distribution was imaged on a pyroelectric camera
(Pyrocam III, Ophir Photonics). The sample was mounted on a
linear translation stage with a micrometer screw gauge, allowing
for the imaging of different z-planes every 100 μm. (cf. Supplementary
Fig. S2).

RESULTS AND DISCUSSION

Here, we present a novel approach for the design of active plasmonic
nanophotonic components that combines metasurfaces with the low-
loss phase-change material (PCM) Ge3Sb2Te6 (GST-326)32,37. In
particular, we make use of the large contrast of the optical dielectric
constants between the amorphous (na≈ 3.5 + 0.001i) and crystalline
phases (nc≈ 6.5+ 0.06i) at ca. 3.1 μm (cf. Supplementary Fig. S4). In
our proof-of-concept demonstration, two different sets of plasmonic
antenna elements A and B provide distinct functionalities, for
example, beam refraction to opposite directions, but are spatially
staggered within one light interaction area on top of a GST layer
(Figure 1a). Depending on the state of the phase-change material, one
can select which set of plasmonic antennas strongly interacts with the
incident light at a certain operating wavelength. This is achieved by
choosing appropriate lengths for A and B type antennas such that their
respective plasmon resonance wavelengths match the operating
wavelength either in the amorphous or crystalline PCM state
(Figure 1b). Therefore, switching the PCM selectively 'activates' a
subset of metasurface elements, which is reminiscent of early work on
frequency selective surfaces38,39. The concept of staggering different
designs into one layout crucially hinges on the inherent local surface
plasmon resonance property of exhibiting extinction cross-sections at
resonance that are much larger than the geometrical footprints of the
individual antenna elements. This allows for elements to be spaced
relatively far apart from one another while retaining an effectively
continuously covered surface from a light interaction view point. The
only limiting factor in designing staggered metasurfaces lies in
avoiding propagating surface modes such as Rayleigh anomalies
stemming from a periodic arrangement of plasmonic antenna

elements with certain periodicities that might introduce undesired
loss channels.
First, we demonstrate the principle for constructing bi-functional

active plasmonic devices employing a plasmonic beam-switching
metasurface that refracts an incident beam in opposite directions
depending on the phase of the active PCM layer. We utilize a
dispersionless geometric phase approach40 to design abrupt phase
jumps Φ at the metasurface where the relative rotation angle of a
nanorod antenna is directly related to the phase that is picked up by
the cross-converted fraction of incident circularly polarized light
(CPL). The cross-converted field scattered by the antennas arises
from the dipole moment p that is induced by an incident electric field,
which impinges on a dipole that forms an angle φ with the x axis in
the x – y plane as follows:

pL Rð Þ ¼ a1eL Rð Þ7a2e
7 i2jeR Lð Þ

� �
;

where a1; a2 are the co- and cross-polarization amplitudes, respec-
tively, the subscripts R and L denote right- and left-handed circularly
polarized light, respectively, and eL(R) are the unit vectors for left- and
right-handed circularly polarized light. The sign in the exponent
depends on the combination incidence/transmission and is positive for
LCP/RCP and negative for RCP/LCP. Thus, a continuously full 0 to 2π
range of abrupt phase jumps Φ= 2φ can be realized by rotating the
electric dipole, that is, a plasmonic nanorod antenna, in the x–y plane
from 0 to π40. Therefore, arranging m nanorods equally spaced over a
superperiod Λ with relative rotation angles of π/m in between adjacent
elements yields a constant phase gradient dΦ/dx. The generalized
Snell’s law for the converted circularly polarized light is then4

nt sin yt � ni sin yi ¼ l0
2p

dF
dx

¼ 7
l0
p
dj
dx

¼ 7
l0
L

Using this principle, we construct the unit cell of the beam-switching
active plasmonic metasurface to consist of two rows of m= 15
antennas A and B with lengths lA= 600 nm and lB= 370 nm,
thicknesses tA= tB= 40 nm and widths wA=wB= 50 nm. The anten-
nas are made of gold and are equally spaced in x-direction with
periodicity p= 900 nm, and distance between rows A and B as
d= 550 nm (Figure 2a). This results in plasmon resonances at
λ0= 3.2 μm for antennas A on an a-GST layer and antennas B on a
c-GST layer. The superperiod Λ is 13.5 μm, which yields a refraction
angle of θt= ± 13.28°, depending on the helicity of the incident light.
The nanorods in the upper row are rotated clockwise going from left
to right whereas those in the lower row are rotated anti-clockwise
leading to opposite refraction angles for the same helicity of incident
circularly polarized light. Full-field finite-difference time-domain
simulations were carried out for the unit cell with periodic boundary
conditions in x- and y-directions. The metasurface is located at z= 0
and illuminated from the top at normal incidence with RCP light. The
resulting phase profile of a cut through the x–z plane demonstrates the
refraction to opposite angles for cross-converted light (LCP) a-GST
and c-GST (Figure 2b). The normalized transmittance spectra reveal
that antennas A are resonant around 3.2 μm in the a-GST case,
whereas antennas B’s resonance shifts to this spectral position in the
c-GST case. Note, that the transmittance values above a value of 1 are
due to the excitation of grating modes, which leads to more light being
funneled through the same interaction area with respect to the
background area used for normalization. The state of the phase-
change material thus selects whether antenna set A or B interacts with
the incident light, which fundamentally differs from previous
approaches where the incident state of light selected, which part of
the metasurface would be interacting41–43.
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We fabricated the design using electron beam lithography over an
area of 600 μm×600 μm to define the plasmonic gold nanorods. As
substrate, we used CaF2 with a 50 nm thick layer of GST-326 followed

by a 15 nm thick ZnS:SiO2 capping layer to prevent oxidation and
chemical isolation between the GST and gold. A scanning electron
micrograph of the resulting metasurface is shown in Figure 3a. In
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Figure 1 Active plasmonic metasurface for beam switching. The active metasurface consists of a 50 nm thick GST-326 layer underneath a geometric phase
metasurface for beam switching. Two types of nano-antennas A and B with different plasmon resonances are alternated line-wise. (a) When the active layer is
in the amorphous phase, only type A rods interact with the incident light at 3.1 μm wavelength and deviate the beam (left). When the active layer is in the
crystalline phase, only type B rods interact with the incident light and deviate the beam into the opposite direction due to their relative orientation (right).
(b) Schematic depiction of transmittance of active metasurface in the amorphous (left) and crystalline (right) state.

Superperiod 13.5 µm 

900 nm

3

0

1.2

Tr
an

sm
itt

an
ce

Tr
an

sm
itt

an
ce

1.0

0.8

0.6

0.4

0.2

1.2

z

0

A

B

x

1.0

0.8

0.6

0.4

0.2

20
00

25
00

30
00

35
00

40
00

Wavelength (nm)Wavelength (nm)

Amorphous
Crystalline

45
00

50
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

–3

� = 3.1 µm

a

b

c

Figure 2 Working principle for active beam switching metasurface. (a) The fundamental building block consists of two rows of differently sized nano-antenna
elements A and B. Antennas A are longer and resonant at 3.2 μm for an amorphous GST substrate. The antennas are arranged such that each consecutive
antenna, going from the left to the right, is clockwise rotated by 12° with respect to the previous antenna. Antennas B are shorter and resonant at 3.2 μm for
a crystalline GST substrate. They are arranged in counter-clockwise rotation. (b) Phase plots of the cross-converted scattered field (LCP) from full-field
simulations with RCP light impinging. Depending on the state of the GST substrate, the beam is deviated into different directions. (c) Simulated
transmittance of beam switching metasurface for a-GST and c-GST.
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order to verify the optical properties in both the amorphous and
crystalline phases as well as the mechanical and chemical stability of
the proposed design, we induce a single phase change in the fabricated
sample. GST is amorphous as-deposited and undergoes a phase
transition to the crystalline state when heated above its crystallization
temperature of Tcryst= 160 °C. Therefore, we employ hot plate
induced crystallization by heating the sample for 2 min at 180 °C.
Amorphization on the other hand is achieved by raising the GST
temperature above its melting temperature of ca. Tmelt= 640 °C and
then melt quenching it. This requires an optical or electrical pulse that
selectively and rapidly only heats the GST, which subsequently
dissipates its heat to the environment, in particular, the

substrate44,45. Therefore, we cannot cycle the different phases using
the hot plate induced heating approach.
We carried out Fourier transform infrared (FTIR) spectroscopy

measurements of the same sample before and after heating using a
Bruker Vertex 80 coupled to a microscope. As designed, the plasmon
resonance of the longer nanorods A lies at 3.15 μm for a-GST whereas
the shorter nanorods B exhibit a resonance at 2.28 μm. In the
crystalline state, the plasmon resonance associated with nanorod set
B is shifted to 3.15 μm, which excellently coincides with the resonance
position of antenna set A in the a-GST case. Simultaneously, the
plasmon resonance of antenna set A is shifted out of the region of
interest to 4.1 μm.
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Figure 3 Experimental results of beam switching metasurface. (a) SEM micrograph of the beam switching metasurface fabricated by electron beam
lithography. (b) Transmittance for the fabricated metasurface in amorphous (left) and crystalline (right) state. (c) Infrared camera images and intensity plots
(same arbitrary units scale) of the beam transmitted by the active metasurface in the amorphous (left) and crystalline (right) state. As designed, the deviated
beam switches to the opposite side of the main beam after inducing crystallization in the phase-change material.
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In both the amorphous and crystalline states, the sample was
characterized as detailed in the Methods section. The resulting images
for RCP illumination are shown in Figure 3c. When the GST is in its
amorphous state, antenna set A interacts with the incident light and
refracts the cross-converted portion of the incoming beam (LCP) to
the right side of the nonconverted RCP part, which is subjected to the
conventional Snell’s law and therefore does not change its propagation
direction. The measured deviation angle is 13.23°, in good agreement
with the theoretical value of 13.28°, which can be obtained using
a ¼ sin�1ðl0=LÞ. For crystalline GST, the incident beam interacts
with antenna set B, thus, the converted portion is refracted to the
opposite direction. The relative intensity of the anomalously refracted
beam in the c-GST case is lower than in the a-GST case because the
scattering of the plasmon resonance of antenna set B is weaker as can
be seen in Figure 3b. This is due to the fact that the dipole strength of
the shorter nanorods used for antenna set B is weaker, which is further
reduced by the higher real and imaginary parts of the refractive index
of c-GST. One can partially counteract this decrease in plasmon
resonance amplitude by using thicker and longer nanorods for
antenna set B or using two rows for each single row of antenna set
A or by developing even less lossy PCMs. The measured relative
efficiency, given by the intensity ratio of the anomalously refracted
beam to the incident beam, is approximately 5% in accordance with
previously reported values40. Antennas A are very weakly excited
(0.5% efficiency) in the c-GST case leading to the appearance of a faint
side lobe at the original position.
As a second practical example, we demonstrate the concept for a

bifocal cylindrical plasmonic metasurface lens. The required spatial

phase profile with the corresponding rotation angles (Figure 4a) for
nanorods in antenna sets A and B are calculated over an area of
600 μm using the formula for diffractive cylindrical lenses10,46

j xð Þ ¼ 0:5k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ x2

q
� fj j

� �
;

where φ denotes the rotation angle, f the focal length, k0 the free space
wavevector and x the associated x-position of the nanorod.
In particular, we use focal lengths fA= 0.5 mm for antenna set A

and fB= 1 mm for antenna set B, that is, for amorphous GST, the
focus will lie at 0.5 mm and for crystalline GST at 1 mm. The incident
polarization is RCP such that the metalens will operate as converging
lens10. The periodicity is kept at 900 nm in x-direction and 110 nm in
y-direction with a center-to-center distance between antenna sets A
and B at 550 nm.
We carried out full-field simulations over a 650 μm simulation

domain with perfectly matched layers as boundaries and incident RCP
plane wave illumination at 3.1 μm to verify the performance of our
design (Figure 4b). The plots of the converted field intensities (LCP)
reveal that indeed focusing occurs in both the amorphous and
crystalline case at the chosen z-positions. We fabricated the design
using the same procedure as before (see Materials and Methods
section, SEM micrograph in Figure 5b) and characterized the sample
at 3.1 μm wavelength with our MOPA source. Using a quarter
waveplate before the active metalens, we generate RCP from the
linearly polarized MOPA output and subsequently filter with an
identical quarter waveplate and a linear polarizer for converted LCP
light. Using a microscope with × 20 magnification, we image different
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Figure 4 Working principle of cylindrical bifocal lens. As for the beam-switching metasurface, antennas A and B are line-wise alternated on a GST substrate,
which yields a cylindrical lens with varying focus depending on the type of antenna, which interacts with the incident light. (a) Rotation angle versus
x-position for antenna type A (left) and B (right). These distributions give rise to a focus at z=0.5 mm for amorphous GST and z=1 mm for crystalline GST.
(b) Full-field simulation of field intensities arising in the amorphous (left) and crystalline (right) cases. As designed, the focus lies at z=0.5 mm in the
amorphous case and z=1 mm in the crystalline case.
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z= constant planes, revealing the beam shape at different distances
from the bifocal plasmonic lens (see Supporting Information for
details). The resulting images for the sample plane and z= 0.5 and
1 mm-distances are shown in Figure 5a. When the GST is in the
amorphous state, as before, only antenna set A interacts with the
incoming light, thus imprinting the phase profile that creates a focus at
z= 0.5 mm, which leads to a bright line focus at this distance. After
inducing a phase change to the crystalline state, as designed, antenna
set B defines the functionality of the metalens. This manifests as a focal
line that becomes visible at z= 1 mm. As for the beam-switching case,
antenna set A weakly interacts in the c-GST case as well leading to the
appearance of a faint focal line at 0.5 mm of ca. 0.5% efficiency. Note,
that while our demonstration used moderate numerical apertures
(NA= 0.5) in the amorphous case, it has been demonstrated that high
numerical apertures of NA= 0.8 can be achieved with a geometrical
phase approach using dielectric nanofins47. The achievable NA is only
limited by how densely the spatial sampling of the phase can be carried
out, which is comparable to nanofins and plasmonic antennas.
The focusing efficiency, defined as the focused intensity divided by

the incoming intensity, is relatively low (ca. 10 % in the crystalline case
and 5 % in the amorphous case) compared to high-efficiency dielectric
metasurfaces. However, using plasmonic antennas as presented here
has the unique benefit of being highly sensitive to the dielectric
environment, which is not the case for dielectric nanofins. Hence, our
design concept can only be realized in a plasmonic system.

CONCLUSIONS

In conclusion, we have presented a novel approach for designing active
compact nanophotonic devices and experimentally demonstrated the
feasibility in terms of optical properties, and mechanical and chemical
stability at the example of a plasmonic beam switching metasurface

and a bifocal metalens. The method proposed has the benefit that it is
highly integrated in a layered fashion without relying on any
mechanical motion or reconfiguration. While we chose to restrict
ourselves to interweaving only two functionalities per sample, it is also
possible to utilize more sets of nanorods with distinct resonances. The
GST layer can be partly switched from the amorphous to crystalline
state (the reverse process to the amorphous state would be single-step
due to it being achieved through melt quenching) to generate
intermediate refractive indices that select for the different antenna
sets whereby each of these states would be metastable by themselves48.
The limiting factor lies therein that more antenna sets would equal less
area coverage per antenna set and therefore a weaker individual
performance. However, since the functionality is only imprinted on
the converted part of the beam, one can easily filter out any light that
passes through the metasurface without interacting. Furthermore, a
whole range of PCMs exists that all have unique optical properties37

such that an additional design parameter is readily available through
the choice of a particular PCM.
One is not restricted to combining similar functionalities into one

active metasurface: one can easily 'mix-and-match' entirely different
optical components in one active metasurface and thus create highly
integrated multi-purpose nanophotonic components. Furthermore,
while our demonstration relies on one-directional hot plate induced
phase change, it is well-known that GST can be reversibly electrically
and optically switched on ultrafast time-scales44,45,49. A practical
implementation of our presented design concept would ideally utilize
a diced GST substrate instead of the continuous layer used in the
present work. This would allow for using standard electrical switching
setups known from data storage that deal with nanoscale volumes of
phase-change material. For electrical switching, additionally imple-
menting indium tin oxide cross-bar electrodes would even enable
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individual addressing of GST patches. Overall, the approach presented
creates an exciting new design principle that can be explored in many
directions ranging from on-demand nanophotonic components, such
as novel scanners combining beam switching and lensing, to dynamic
phased-array optics for aberration correction and active holography.
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