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ABSTRACT: We present an analytic derivation for the enhance-
ment of local optical chirality in the near field of plasmonic
nanostructures by tuning the far-field polarization of external light.
We illustrate the results by means of simulations with an achiral and a
chiral nanostructure assembly and demonstrate that local optical
chirality is significantly enhanced with respect to circular polarization
in free space. The optimal external far-field polarizations are different
from both circular and linear. Symmetry properties of the
nanostructure can be exploited to determine whether the optimal
far-field polarization is circular. Furthermore, the optimal far-field
polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization.

KEYWORDS: optical chirality, plasmonics, near-field response, analytic optimization, femtosecond polarization pulse shaping,
chiroptical spectroscopy

Chirality is a geometric property that is of relevance
throughout a wide field of natural and artificial entities

and materials. For example, many biomolecules such as amino
acids or sugars are chiral, that is, they cannot be superimposed
onto their mirror images. Such molecules interact differently
with left- and right-handed circularly polarized light (LCPL and
RCPL, respectively), leading to chiroptical effects, for example,
optical rotatory dispersion (ORD) and circular dichroism
(CD).1 The latter is caused by the difference in absorption
between LCPL and RCPL, and is exploited in CD spectros-
copy. However, molecular CD signals are typically weak and
thus difficult to measure with high fidelity, especially in variants
where additional time resolution is desired2−8 or where
concentrations are low, such as in sensing applications.
Hence, for practical purposes, the question arises whether
chiroptical signals can be enhanced with respect to the
conventional measurement techniques. This also leads to a
deeper fundamental question: Which electromagnetic field is
actually most sensitive to chirality? Traditionally, circular
polarization is employed. But can one do better? More
specifically, we ask whether suitably “tailored” light fields can
be used to enhance chiroptical effects, independent from the
investigated specimen.
Formally, the absorption A of an electromagnetic field by a

chiral molecule at frequency ω can be expressed via9−11

ω α χ∝ ″ + ″ − ″⎜ ⎟⎛
⎝

⎞
⎠A U

c
U G Ce 2 b

(1)

wherein c is the speed of light in free space, Ue and Ub are the
electric and magnetic energy density, respectively, and the
imaginary parts of the electric and magnetic polarizability are

denoted by α″ and χ″. The imaginary part of the so-called
mixed electric-magnetic dipole polarizability, which arises for
chiral molecules, is described by G″, and the optical chirality C
introduced by Lipkin9 quantifies the chiral nature of the
electromagnetic field. A precise definition of C and its
discussion are given in the following section. The sign of G″
depends on the handedness of the chiral molecule,12 whereas
the sign of C depends on the handedness of the electro-
magnetic field. Considering eq 1, the difference in the
absorption of light of opposite handedness results from the
last term, which is proportional to the optical chirality. Hence,
analogously to conventional CD spectroscopy, arbitrary pairs of
electromagnetic field distributions with opposite optical
chirality but identical Ue as well as Ub can be used for CD-
like measurements. Thus, the difference in absorption of such
enantiomorphic fields can, in principle, be enhanced by
increasing the magnitude of C. For propagating plane waves,
the largest optical chirality is achieved for CPL. Tang and
Cohen have introduced an experimental scheme where they
superimposed two counterpropagating circularly polarized
beams of opposite handedness and slightly different amplitudes,
leading to a standing wave pattern.13 They observed an
enhanced optical response of chiral molecules with respect to
their relative differential absorption, that is, the difference in
absorption of light with opposite handedness normalized to the
absolute (chirality-independent) absorption, which is propor-
tional to C/Ue. However, this relative signal was enhanced due
to the reduction of Ue at the nodes of the standing waves and
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not due to an increased optical chirality. An option for the
enhancement of absolute instead of relative chiroptical signals is
provided by the wide field of chiral plasmonics.14−22 Geo-
metrically chiral plasmonic nanostructures with large chiroptical
far-field responses have been developed.23−33Furthermore, the
interaction between chiral molecules and plasmonic nanostruc-
tures was investigated in theory34−39 and experiments.40−46 In
recent years, it has been demonstrated that the near fields of
plasmonic nanostructures can be utilized to locally enhance the
optical chirality.47,48 By means of specially tailored chiral
nanostructures, local optical chirality values greater than that of
CPL in free space were achieved.49−51 Enhanced optical
chirality was even found at distinct local positions near achiral
nanostructures.52−54 Additionally, an enhancement in a large
volume region was demonstrated.55

In all approaches of optical chirality enhancement mentioned
above, either linearly or circularly polarized excitation light has
been used. However, besides the composition and geometry of
the nanostructures, the modification of the far-field polarization
of the exciting radiation offers another degree of freedom to
increase local optical chirality. It has been shown previously,
both theoretically and experimentally, that it is possible to
coherently control the localization of near fields on a nm spatial
and fs temporal scale using femtosecond polarization pulse
shaping.56−62 This is fundamentally different from arbitrary
steady-state elliptical polarization due to the time dependence
of the polarization.
In the present work we demonstrate local optical chirality

enhancement by tuning the far-field polarization of the external
light. In particular, we derive analytic expressions for the
optimal external field. For an exemplary illustration, we then
apply the principle to an achiral and a chiral nanostructure
assembly. The numerical results confirm that local optical
chirality is enhanced both with respect to free space as well as
with respect to circular input polarization. Moreover, we
compare the temporal electric and magnetic near-field
evolution for optimal and circular far-field polarization to
illustrate the control mechanism. We finally discuss the
potential for enhancing the “local dissymmetry factor” before
summarizing the theoretical findings and providing an outlook
for future applications.

■ ANALYTIC DERIVATION OF OPTIMAL LOCAL
OPTICAL CHIRALITY

One Given Position. The basic idea of local optical
chirality enhancement is illustrated in Figure 1. If a plasmonic
nanostructure, for example, a gold sphere, is illuminated by
external light, local electric and magnetic near fields in the
vicinity of the nanostructure are generated. The local optical
chirality C(r, ω) at position r and frequency ω can then be
calculated via9,10

ω
μ ω

ω ω= −
ϵ * ·C r E r H r( , )

2
Im[ ( , ) ( , )]0 0

loc loc (2)

wherein ϵ0 is the vacuum permittivity, μ0 is the vacuum
permeability, and the complex-valued vectors Eloc and Hloc are
the local electric and magnetic fields, respectively, with the
asterisk (*) denoting complex conjugation. Both fields depend
on the local response of the nanostructure as well as on the far-
field polarization of the external light. In Figure 1a, the far-field
polarization is circular, leading to a certain value for C(r, ω).
However, there are possibly far-field polarizations for which the
optical chirality value at this position is higher or lower. This

can be understood because the response of the nanostructure
crucially depends on the incident polarization. Additionally,
interference between incident and scattered fields influences the
local optical chirality. The goal is now to find the optimal far-
field polarizations, that is, the far-field polarizations that lead to
maximum (i.e., highest positive) local optical chirality
Cmax(r, ω) and minimum (i.e., highest negative) optical chirality
Cmin(r, ω) (Figure 1b).
In the case of external plane-wave illumination, the

electromagnetic field is transverse and, thus, the electric field
consists of two orthogonal far-field polarization components,
α = {1, 2}, that can be expressed by

ω
ω

=
ϵα

α φ ωαE
I

c
e( )

( )
2

iext

0

( )

(3)

with the intensity Iα(ω) and the phase φα(ω). Assuming a
linear response of the nanostructure, the local electric and
magnetic fields can then be obtained via the linear super-
positions

∑ω ω ω=
α

α α
=

EE r S r( , ) ( , ) ( )e
loc

1,2

ext

(4)

and

∑ω ω
μ

ω=
α

α α
= c

EH r S r( , ) ( , )
1

( )h
loc

1,2 0

ext

(5)

with the complex-valued local electric and magnetic response
functions Sα

e (r, ω) and Sα
h(r, ω) of the corresponding far-field

polarization components, respectively. The local response
functions are dimensionless vectors and characteristics of the
nanostructure. Furthermore, they depend on the illumination
geometry, for example, the incidence angle and the focusing
parameters of the external light, but they are independent from
the far-field polarization state that is defined by the amplitudes

ωαI ( ) and the phases φα(ω).
62 Note that the electric field of

the external light is sufficient to obtain both the local electric
and local magnetic fields. Inserting eqs 4 and 5 into eq 2 leads
to

Figure 1. Basic idea of local optical chirality enhancement. (a) Far-
field illumination of a gold sphere with left-handed circularly polarized
light (LCPL, red circle) induces the local electric and magnetic fields
Eloc(r, ω) and Hloc(r, ω), respectively, at position r and frequency ω.
Both fields determine the local optical chirality C(r, ω) according to
eq 2. Since they depend not only on the local response of the
nanostructure, but also on the far-field polarization of the external
light, C(r, ω) can be optimized by tuning the far-field polarization. The
propagation direction of the external light is indicated by the green
arrow. (b) By means of optimization, far-field polarizations (blue/red
ellipse) can be found that lead to maximum/minimum local optical
chirality Cmax(r, ω)/Cmin(r, ω).
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Since we are interested in optical chirality for a given incident
spectrum, we rewrite this relation in terms of the total intensity
I(ω) = I1(ω) + I2(ω) and the relative phase between the two
external electric-field components φ(ω) = [φ2(ω) − φ1(ω)],

ω ω ω ω

ω ω ω ω ω

ω φ ω ω φ ω

= − −

+ + −

× +
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with the abbreviations

ω ω ω= * ·C r S r S r( , ) Im[ ( , ) ( , )]S
e h
1 11 (8)

ω ω ω ω ω= * · + * ·C r S r S r S r S r( , ) Im[ ( , ) ( , ) ( , ) ( , )]S
e h e h
1 2 2 1p

(9)

ω ω ω ω ω= * · − * ·C r S r S r S r S r( , ) Re[ ( , ) ( , ) ( , ) ( , )]S
e h e h
1 2 2 1m

(10)

ω ω ω= * ·C r S r S r( , ) Im[ ( , ) ( , )]S
e h
2 22 (11)

Parameters CS1(r, ω) and CS2(r, ω) are proportional to the
local optical chirality of the independent response functions,
while CSp(r, ω) and CSm(r, ω) mix the electric and magnetic
response of the two orthogonal far-field polarizations. It can be
seen from eq 7 that the local optical chirality depends on the
intensities of the two far-field components I1(ω) and I2(ω) =
[I(ω) − I1(ω)] as well as on their relative phase φ(ω), that is,
on the polarization state of the external light for a given total
intensity I(ω). Hence, tuning of the external far-field
polarization enables the control of local optical chirality.
For reference, we use the optical chirality of CPL in free

space that is given by (see Supporting Information, section S.1)

ω
μ ω ω
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ϵ

C
I
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( )
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(12)

to normalize all later results on local optical chirality via
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with the normalized intensity I1̂(ω) = I1(ω)/I(ω). The
normalized optical chirality in free space is then ĈCPL

free (ω) =
±1. The sign indicates the handedness of the chiral
electromagnetic field.
By means of eq 13, it is possible to find the far-field

polarization that leads to either the highest positive or negative

values of local optical chirality, that is, maximum optical
chirality with opposite handedness. In order to determine
extremal values for Ĉ(r, ω), we differentiate eq 13 with respect
to I1̂(ω) and φ(ω), for any given frequency ω independently,
and set the resulting derivatives to zero. Solving for I1̂(ω) and
φ(ω) leads to two different solutions that can be identified as
global maximum and minimum (Supporting Information,
section S.2). The corresponding far-field polarization parame-
ters are expressed by

ω

ω ω

ω ω ω ω
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with φmax(r, ω) and φmin(r, ω) ∈ [−π, π]. Equations 14 and 15
constitute a first major result of the present work, as they allow
us to calculate analytically the external field for optimal local
optical chirality.
Due to the linear response of the nanostructure, the optimal

external polarizations for different frequencies are independent
from each other. Therefore, the result is not restricted to a
monochromatic wave as external light source. Laser pulses, that
is, the superposition of monochromatic waves, can also be used
to optimize the local optical chirality for a continuous
frequency range simultaneously. Note that in general the
optimal far-field polarization parameters I1̂,opt and φopt with
opt = {max, min} can strongly vary for different locations near
the nanostructure, so they depend on the local position r. It can
be proven (Supporting Information, section S.3) that the
normalized intensity I1̂ and the relative phase φ for maximum
and minimum optical chirality are related via:

ω ω̂ + ̂ =I Ir r( , ) ( , ) 11,max 1,min (16)

φ ω φ ω π− =r r( , ) ( , )max min (17)

The relative phases φmax(r, ω) and φmin(r, ω) differ by a
constant offset of ±π. An analogous “π rule” was derived
previously for coherent control of energy localization60 and
experimentally confirmed in gold nanotriangles.61 According to
eq 17, an optimal optical chirality contrast, that is, maximally
different local optical chirality, is achieved by applying a π shift
to the far-field phase difference φ. Moreover, together with eq
16, it can be shown (Supporting Information, section S.4) that
the ellipticities of the two optimal far-field polarizations differ
only in their sign, that is, in their direction of rotation, and that
the angle between their orientations, that is, between the
principal axes of their ellipses, is ± π/2. The relation between
the two optimal far-field polarization states is illustrated by the
Poincare ́ sphere in Figure 2. Each point on the surface of the
sphere represents a polarization state determined by its
ellipticity ϵ and orientation angle θ. Due to the relations
ϵmax = −ϵmin and θmax = θmin ± π/2 the points of the far-field
polarizations for minimum optical chirality are the antipodal
points of the corresponding far-field polarizations for maximum
optical chirality, that is, “maximally different external polar-
ization states” lead to “maximally different local optical
chirality”. In the example of Figure 2, the green line through
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the origin of the Poincare ́ sphere connects external polarization
states leading to maximum and minimum local optical chirality.
Combining eqs 14 and 15 with eq 13 leads to the local

maximum and minimum normalized optical chirality

ω ω ω

ω ω ω ω

̂ = − +

∓ + + −

⎜

⎟

⎛
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⎞
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C C C
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2 2 2 1/2

1 2

p m 1 2

(18)

As a next step, we compare these optimal chirality values with
those obtained by CPL as external input. In that case, using
I1̂(ω) = 1/2 and φ(ω) = π/2 for LCPL and φ(ω) = −π/2 for
RCPL the normalized local optical chirality is

ω ω ω ω̂ = − + ±C C C Cr r r r( , )
1
2

[ ( , ) ( , ) ( , )]S S SLCPL
RCPL 1 2 m

(19)

Comparing eqs 18 and 19, CPL is the optimal far-field
polarization only if either

ω ω ω= = =C C Cr r r( , ) ( , ) ( , ) 0S S S1 2 p (20)

or if

ω ω ω= =C C Cr r r( , ) ( , ) and ( , ) 0S S S1 2 p (21)

In all other cases, circular input polarization is not optimal, and
eqs 14 and 15 provide room for enhancement.
Region of Interest (ROI). For practical purposes, one is

often interested in enhanced optical chirality over a finite
volume of space, rather than just at an isolated point. In
particular, this is relevant for potential experiments in chiral
sensing or chiral spectroscopy where, for example, chiral
interactions between molecules and light play a key role for the
measured signal. In CD-like measurements with pairs of
electromagnetic field distributions with opposite handedness,
an enhanced local optical chirality throughout the sample
volume of the investigated molecules would lead to an

enhanced difference in absorption. Therefore, we also define
and investigate the averaged normalized optical chirality C(ω)
of a certain region of interest (ROI) by integrating the
normalized local optical chirality over the complete ROI and
normalizing the result to the volume V:

∫ω ω̅ = ̂C
V

C r r( )
1

( , )d
V (22)

Using the result for the normalized local optical chirality, we
obtain

ω ω ω ω ω

ω ω ω φ ω
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2
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p
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by replacing in eq 13 the local parameters CSj(r, ω) with j =
{1, 2, p, m} from eqs 8−11 with their ROI averages

∫ω ω̅ =C
V

C r r( )
1

( , )dS
V

Sj j (24)

As a consequence, we obtain the optimal optical chirality within
the ROI, Copt(ω), and the required far-field polarizations
defined by I1̂,opt(ω) and φopt(ω) via eqs 14, 15, and 18 as well,
using the averaged parameters CSj(ω) instead of the local ones

CSj(r, ω). Note that the optimal results do not depend explicitly
on r any more because of the volume integration, but an
implicit dependence on the spatial location is retained via the
choice of the ROI.

■ NUMERICAL ILLUSTRATION
Calculation Technique. Now we illustrate the fundamental

result from the previous section numerically using two specific
nanostructure assemblies. We will optimize the local optical
chirality by tuning the far-field polarization of the external light
that propagates in positive z direction along its normalized
wave vector ek either as a monochromatic plane wave with
frequency ω or as a superposition of monochromatic plane
waves, that is, a laser pulse with a defined spectral bandwidth.
In the latter case the following optimization procedure is
carried out for each frequency component separately. The two
orthogonal far-field polarization components 1 and 2 of the
external light are parallel to the x axis along the unit vector e1
and parallel to the y axis along e2, respectively. The
corresponding far-field polarization state for a given total
intensity I(ω) is then defined by the normalized intensity I1̂(ω)
and the relative phase between the two components φ(ω). In
the first step, the local response functions Sα

e (r, ω) and
Sα
h(r, ω), with α = {1, 2}, are determined for both far-field
polarization components. This is done for each component
separately by means of multiple elastic scattering of multipole
expansions (MESME), introduced by Garcıá de Abajo.63 First,
the local electric and magnetic fields Eloc(r, ω) and Hloc(r, ω)
are simulated for external light with a linear polarization along
the x axis and field amplitude of unity, that is, E1

ext(ω) =
Ex
ext(ω) = 1 and E2

ext(ω) = Ey
ext(ω) = 0. The resulting local

electric field is then identified as response function S1
e(r, ω) and

the local magnetic field as ω
μ

S r( , )
c

h1
1

0
. After that, the

simulations are repeated for external light under the same

Figure 2. Relation between exemplary optimal far-field polarizations
on the surface of the Poincare ́ sphere. Each point of the surface
represents a polarization state determined by the ellipticity ϵ and the
orientation angle θ. The latitude and longitude of the surface have the
values 2ϵ and 2θ, respectively. In the upper hemisphere, the
polarization states are left elliptical (ϵ > 0, red solid ellipses) with
the pole representing LCPL, in the lower hemisphere right elliptical
(ϵ < 0, blue dashed ellipses) with the pole representing RCPL. The
polarization states at the equator are linear (ϵ = 0, black lines). The
two points of optimal far-field polarization are connected by a green
line through the origin. The point of the far-field polarization for
minimum optical chirality is the antipodal point of the corresponding
far-field polarization for maximum optical chirality.
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illumination conditions, but with linear polarization along the y
axis, that is, E1

ext(ω) = 0 and E2
ext(ω) = 1, to obtain the response

functions S2
e(r, ω) and S2

h(r, ω). For any given ROI, we then
calculate parameters CS1(ω), CSp(ω), CSm(ω), and CS2(ω) from
eqs 8−11 and 24 in order to finally obtain Copt(ω) via eq 18 as
well as I1̂,opt(ω) and φopt(ω) via eqs 14 and 15, respectively.
Considering the averaged quantities also reduces the risk of
artifacts resulting from numerical inaccuracies at singular points
in the local fields for single positions r.
Single Gold Sphere. The first investigated nanostructure is

a single gold sphere in vacuum with a radius of 50 nm located at
the origin of the coordinate system (Figure 3a). The electric
and magnetic response functions of far-field polarization
components 1 and 2 are calculated for the resonance frequency
of the sphere, ωR = 3.65 rad/fs, as described above. The
optimization of optical chirality is performed for several cubic
ROIs (edge length of 20 nm) that differ only in their positions
with respect to the gold sphere. The center of the first ROI is
located at (0, 0, 70) nm. From there, the positions of
subsequent ROIs are obtained by shifting the cube in steps of
10 nm in positive y direction, until its center is at
(0, 70, 70) nm. This scan of the ROI position is called
pathway I in the following and indicated by the symbol “I” in
Figure 3a. After that, the scan is continued by shifting the cube
from (0, 70, 70) nm in steps of 10 nm in negative z direction to
the position at (0, 70, 0) nm (pathway II indicated by “II” in
Figure 3a). The results for Copt as well as CLCPL and CRCPL are
shown in Figure 3b as a function of the ROI center position
and the optimal far-field polarization parameters I1̂,opt and φopt

are depicted in Figure 3c. For the first ROI with its center at
(0, 0, 70) nm, the far-field polarizations for Cmax and Cmin are
equal to LCPL and RCPL, respectively, with I1̂,max(ω) = 1/2
and φmax(ω) = π/2 as well as I1̂,min(ω) = 1/2 and φmin(ω) =
−π/2. This can be explained by the symmetry of the
nanostructure with respect to ek as well as by the position
and the symmetry properties of the ROI. We show in section
S.5 of Supporting Information that, in general, for a C4v

symmetric nanostructure with the principal axis parallel to ek
the parameters CS1, CS2, and CSp of a ROI are simultaneously
zero if the shape of the ROI is also C4v symmetric with identical
principal axis and mirror-symmetry planes. Thus, the condition
for CPL as optimal far-field polarization defined in eq 20 is
fulfilled at this ROI position. In contrast to the first ROI, the
subsequent ROIs along pathways I and II do not share their
principle axis with the nanostructure. Nevertheless, they still
have mirror symmetry with the yz plane, that is, the mirror-
symmetry plane of the nanostructure parallel to e2 and ek. This
also leads to vanishing parameters CS1 and CS2, but parameter

CSp is nonzero and thus the optimal far-field polarizations for
these ROIs are different from CPL (see Supporting
Information, section S.5). Note that CS1 and CS2 would also
vanish if the ROIs had mirror symmetry with respect to the xz
plane, that is, the mirror-symmetry plane of the nanostructure
parallel to e1 and ek. In the case of CS1 = CS2 = 0, Cmax and Cmin

as well as CLCPL and CRCPL differ only in their sign according to
eqs 18 and 19. Therefore, it is sufficient to discuss the relation
between Cmax and CLCPL for all ROIs along both pathways.
We observe that, for the first ROI, Cmax is lower than +1, the

normalized optical chirality value for LCPL in free space ĈLCPL
free .

For the subsequent ROIs along pathway I, the values for Cmax
rise up from 0.32 to 0.94, but the difference (Cmax − CLCPL)
increases only up to about 10−3 and the optimal far-field
polarization is only slightly different from LCPL. For the ROIs
along pathway II, however, a further rise of Cmax up to 1.5 is
observed, significantly larger than ĈLCPL

free . Simultaneously, this
value also exceeds CLCPL by 0.3, indicating that optical chirality
can be increased significantly with respect to circular input
polarization. Along pathways I and II, the optimal far-field
polarization changes from LCPL to more and more elliptically
polarized light. This is achieved by a variation of the relative
phase φmax, whereas the intensity I1̂,max remains constant at 1/2.
This can be explained by considering eq 14: Due to the
vanishing parameters CS1 and CS2, the intensity I1̂,max has to be

Figure 3. (a) Schematic of first structure for optical chirality control, where different cubic regions of interest (ROIs, blue boxes, 20 nm edge length)
are investigated in the vicinity of a gold sphere with a radius of 50 nm. The external light propagates in positive z direction along its normalized wave
vector ek (green arrow). Its two orthogonal far-field polarization components 1 and 2 are parallel to the x axis along unit vector e1 and to the y axis
along e2, respectively (red arrows). The ROI positions are scanned in steps of 10 nm along the y axis (pathway I) as well as along the z axis (pathway
II). (b) Normalized optical chirality values Cmax (blue circles), Cmin (red squares), CLCPL (pink crosses), and CRCPL (green triangles) as a function of
the ROI center position at the resonance frequency ωR = 3.65 rad/fs of the sphere. (c) Far-field polarization for maximum (blue) and minimum
optical chirality (red) defined by the normalized intensities I1̂,max and I1̂,min (dashed lines) as well as the relative phases φmax and φmin (solid lines with
circles, squares) as a function of the ROI center position. For all ROIs, both I1̂,max and I1̂,min remain constant at 1/2.
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1/2 for each ROI. Note that the intensity I1̂,min is constant at
1/2 for the same reason. In contrast to the parameters CS1 and

CS2, parameters CSp and CSm vary along pathways I and II such
that the relative phase φmax decreases from π/2 to about 0.3π.
According to eq 17, the relative phase φmin shows the same
behavior as φmax with a constant phase offset of π.
Chiral Nanostructure Assembly. In the preceding

section, we have demonstrated the optical chirality enhance-
ment for a single frequency. In general, the far-field
polarizations required for optimum local optical chirality can
vary for different frequencies. This variation is especially strong
in more complex nanostructure assemblies with several
resonance frequencies and reduced symmetry. We illustrate
this effect on a nanostructure consisting of six single gold
spheres with a radius of 70 nm each, arranged in the
configuration shown in Figure 4a. The structure is composed
of two L shapes, each of which contains three gold spheres
within the same xy plane at z = +80 nm for the upper and z =
−80 nm for the lower L shape, respectively. The gap between
the neighboring spheres is 20 nm in x, y, and z direction such
that the near fields of the single spheres are coupled. The upper
L shape is directly above the lower L shape and rotated by π/2
with respect to the z axis. Thus, the nanostructure is left-
handed with respect to ek. Note that, from a geometrical point
of view, the structure is achiral itself, but it can be classified as
chiral under the given illumination geometry. The response
functions of the nanostructure are determined in the same way
as for the single sphere, but now calculated for 16 equidistant
frequencies ω in a range of 2.28 to 3.80 rad/fs. We choose a
cubic ROI (edge length 48 nm) whose center is located at (x =
−80, y = 0, z = −80) nm, that is, exactly between the centers of
two spheres of the lower L shape (blue box in Figure 4a).
Points of the ROI that are positioned within the spheres or on

their surfaces are omitted in the calculations of the averaged
optical chirality.
The resulting chirality values Cmax and Cmin as well as CLCPL

and CRCPL are shown in Figure 4b. The maximum optical
chirality Cmax rises up to more than a factor of 4 for low
frequencies, then drops down at about 2.8 rad/fs and increases
again, followed by a decay at higher frequencies. Compared to
the chirality values obtained for CPL, the values for Cmax are
slightly higher in the low-frequency range and significantly
enhanced in the high-frequency range. Moreover, Cmax exceeds
+1, the chirality value of ĈLCPL

free , for every frequency component.
In contrast to this, CLCPL as well as CRCPL are well below +1 in
the high-frequency range. Hence, for this spectral range the
optical chirality in the chosen ROI is enhanced with respect to
free space by using the optimal far-field polarization, whereas
for CPL, it would be considerably reduced to values < +1. It is
noteworthy that both CLCPL and CRCPL change their sign for
higher frequencies. If chiral molecules were located in the ROI,
chiroptical effects arising from the light-matter interaction, for
example, handedness-dependent absorption, would also have
opposite sign for high and low frequencies. As opposed to this,
the optimal chirality values lead to either positive or negative C
values throughout all frequencies and, thus, a mutually opposite
behavior of the chiroptical effects would be prevented.
Compared to Cmax the values for Cmin are similar, but have
the opposite sign. However, since CS1 ≠ 0 and CS2 ≠ 0, as well

as CS1 ≠ −CS2, the magnitudes of Cmax and Cmin are slightly

different according to eq 18. For the same reason, |CLCPL| ≠
|CRCPL| according to eq 19. This results from the reduced
symmetry of the nanostructure. Since there is no plane of
mirror symmetry parallel to ek, the response functions of far-
field polarization components 1 and 2 cannot be expressed by

Figure 4. (a) Schematic of second structure for optical chirality control: Nanostructure composed of two twisted L shapes, each of which contains
three gold spheres within the same xy planes. The radius of the spheres is 70 nm and the gap between the neighboring spheres in x, y, and z direction
is 20 nm. The external light propagates in positive z direction along its normalized wave vector ek (green arrow). Its far-field polarization
components 1 and 2 are parallel to the x axis along unit vector e1 and parallel to the y axis along e2, respectively (red arrows). The ROI (blue box) is
a cube with an edge length of 48 nm and located between two spheres of the lower L shape. (b) Normalized optical chirality values Cmax (blue
circles), Cmin (red squares), CLCPL (pink crosses), and CRCPL (green triangles) as a function of the angular frequency ω. The black dashed lines show
the values for ĈCPL

free = ±1. (c) Far-field polarization for maximum (blue) and minimum (red) optical chirality defined by the normalized intensities
I1̂,max and I1̂,min (dashed lines) as well as the relative phases φmax and φmin (solid lines with circles, squares) as a function of ω. (d, e) Examples for
polarization-shaped laser pulses in the time domain leading to Cmax (d) and Cmin (e) within the ROI. The temporal polarization states are shown in
quasi-three-dimensional representations as cylinders with corresponding orientations and ellipticities. The amplitudes of the electric far-field
components 1 and 2 are indicated by shadows. The momentary frequency ω(t) is made visible by means of the color. Zero padding in the frequency
domain is used to obtain a smoother behavior in the time domain.
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each other and, thus, the parameters CS1 and CS2 are not related
as they were for the single sphere.
The optimal far-field polarizations are depicted in Figure 4c

as a function of frequency. It is obvious that the far-field
polarization for Cmax depends on ω and is different from
circularly polarized light. Both, the normalized intensity I1̂,max
and the relative phase φmax vary for different frequencies. In the
low-frequency range, the external polarization is elliptical with
intensities slightly larger than 1/2 and relative phases near π/2,
that is, close to LCPL. On the other hand, due to a strong
decrease of the relative phase by roughly π/2 within the
frequency region at about 2.8 rad/fs, the values of φmax are near
zero in the high-frequency range and, therefore, close to the
relative phase of linear polarization. The behavior of I1̂,min is
symmetric to I1̂,max with respect to I1̂ = 1/2 (compare eq 16)
and the behavior of φmin connected to that of φmax by a phase
offset of π (compare eq 17). Thus, the present example
illustrates that for optimum local optical chirality far-field
polarizations different from circular and linear are required.
If we want to fulfill the optimal chirality condition

simultaneously for all frequencies, this requires tuning of the
external polarization state independently throughout the optical
spectrum. Such a technique is available via femtosecond laser
polarization pulse shaping that we developed first for two
independent degrees of freedom (the spectral phases of the two
transverse polarization components).64−67 Recently, it has
become possible to manipulate all four external degrees of
freedom (amplitude and phase for both polarization
components separately).68−73 The latter technique is also
called vector-field pulse shaping. The temporal electric fields of
the two pulses that lead to maximum and minimum optical
chirality are shown in Figure 4d and e, respectively. Here we
assumed a Gaussian spectrum with center frequency ω0 =
2.99 rad/fs and a bandwidth-limited pulse duration of 10 fs.
Since the absolute phases φ1 and φ2 of the far-field polarization
components are not determined by eqs 14 and 15, one of these
can be chosen arbitrarily. This means that for the polarization-
shaping only three degrees of freedom, I1(ω), I2(ω), and either
φ1(ω) or φ2(ω), are necessary to optimize the local optical
chirality. The additional fourth degree of freedom, φ1(ω) or
φ2(ω), can be used, for example, for the manipulation of the
temporal evolution of the local near fields, for the generation of
spectroscopic pulse sequences or for pulse compression.62 For

the depicted pulses φ1(ω) is set to zero and, thus, φ(ω) =
φ2(ω). Both the pulse for Cmax and the one for Cmin are clearly
different from circular and linear polarization and vary with
time.
We repeated the calculation of optical chirality enhancement

for a second ROI of identical size located directly between the
centers of two spheres of the upper L shape (Supporting
Information, section S.6). At this ROI position, a similarly
successful optimization with increased values for the local
optical chirality compared to CCPL and ĈCPL

free was observed.
Since the properties of the response functions within the ROI
were different from those within the first ROI, the frequency-
dependent optimal far-field polarizations and, thus, the optimal
polarization-shaped laser pulses differed significantly as well.

■ ELECTRIC AND MAGNETIC NEAR-FIELD
EVOLUTION

In the previous sections, we demonstrated that the local optical
chirality in the vicinity of plasmonic nanostructures can be
enhanced by far-field polarizations different from CPL. Now we
illustrate the control mechanism. In general, considering eq 2,
the local optical chirality is maximal (minimal) if the scalar
product of Eloc* and Hloc, respectively, contains a minimal
(maximal) imaginary part. This is the case if the amplitudes of
the components Eloc,q and Hloc,q with q = {x, y, z} are maximal
and the corresponding phases between the components are
shifted by ±π/2, due to the complex conjugation of the electric
near field in eq 2. We now exemplify this general finding on the
exemplary temporal field evolutions shown in Figure 5
(associated movies are found in Supporting Information).
For light in free space, circular polarization leads to extremal

optical chirality. Figure 5a (see SI, Movie “Free LCPL”) shows
the temporal evolution of the electric (blue) and magnetic
(red) field vectors at position (0, 0, 0) nm without any
nanostructure for LCPL propagating along the z axis with ω =
2.89 rad/fs. The blue and the red little spheres denote the
momentary tips of the field vectors with respect to the chosen
position, and the blue and red solid lines illustrate the temporal
traces. In addition, the projections onto the xy, xz, and yz
planes facilitate the investigation of individual polarization
components. The vectors of both fields are always perpendic-
ular to each other as expected for a transverse wave and rotate
around (0, 0, 0) nm on a circle in the xy plane. Since the

Figure 5. Snapshots of the movies from Supporting Information showing the temporal evolution of electric (blue) and magnetic (red) fields
obtained for different far-field polarizations. The little spheres indicate the tips of the momentary field vectors and the solid lines their temporal
traces. (a) Electric and magnetic field of LCPL in free space without a nanostructure at position (0, 0, 0) nm and ω = 2.89 rad/fs (see SI, movie
“Free LCPL”). (b) Temporal near fields at position (6, 78, 66) nm in the vicinity of the chiral nanostructure assembly for ω = 2.89 rad/fs and LCPL
as input polarization. The electric and magnetic field components parallel to the x axis oscillate nearly in phase (see SI, movie “LCPL”). (c)
Temporal near fields at the same position and frequency as in (b) obtained for the optimal far-field polarization leading to Ĉmax. The phases of the
electric and magnetic field components parallel to the x axis are shifted by roughly π/2 (see SI, movie “C max”). (d) Temporal near fields at the same
position as in (b) under excitation with the optimal far-field pulse leading to Ĉmax for the frequency range from 2.28 to 3.80 rad/fs (see SI, movie
“Pulse C max”).
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oscillations of the components Ex and Hx, as well as Ey and Hy,
have a phase shift of π/2 with respect to each other, maximal
optical chirality is achieved. For any given intensity, circular
polarization is thus optimal.
In the vicinity of plasmonic nanostructures, the situation is

more complex, because the associated light modes do not
constitute propagating transverse waves, and thus all three
polarization components are available.74 Increased optical
chirality is possible via near-field enhancement of the
amplitudes. For optimum chirality, however, one also has to
fulfill the phase requirement. If circular far-field polarization is
employed, near-field enhancement occurs, but the phases do
not necessarily fulfill the optimal criterion. This is seen in
Figure 5b (SI, movie “LCPL”), which shows the temporal near-
field evolution of the chiral nanostructure assembly at position
(6, 78, 66) nm and ω = 2.89 rad/fs obtained for LCPL as input
polarization. The illumination geometry is identical to that in
Figure 4a. The chosen position is located within the second
ROI (Supporting Information, section S.6), that is, between
two spheres of the upper L-shape. Let us focus on the field
projection in the xy plane. The snapshot indicates a momentary
maximal electric field (blue) along the x direction. At this
instant, the magnetic field (red) also reaches its (albeit smaller)
maximum amplitude along x. Thus, the two fields are in phase
and the π/2 optimality condition is not fulfilled. On the other
hand, for optimal far-field excitation, the corresponding local
fields shown in Figure 5c (see SI, movie “C max”) behave
differently. Now the snapshot reveals that while the electric
field is maximal, the magnetic field passes through zero (along
the x direction), indicating a π/2 phase shift. Analogous analysis
can be carried out for the other polarization directions, but it
has to be kept in mind that the optimization reaches the global
optimum as resulting from a sum (due to the scalar product) of
three field-component multiplications. For the chosen position,
the contributions to the local optical chirality of the local field
components along the y and z directions are negligible for both
LCPL and the optimal far-field polarization, because the
amplitude of Eloc,y is very small and the phase between Eloc,z and
Hloc,z is shifted by π. Thus, it may be most important to fulfill
the phase condition for that component with the highest
amplitude product.
Figure 5d shows the temporal electric and magnetic fields

that are obtained for an optimal polarization-shaped laser pulse
as input and lead to maximum local optical chirality values in
the frequency range from 2.28 to 3.80 rad/fs at this position
(see SI, movie “Pulse C max”). Since the optimal far-field
polarizations differ with frequency and therefore consist of
different elliptical polarization states in the frequency domain,
the behavior in the time domain is much more complex after
Fourier transformation. In particular, the orientation of the
temporal ellipses strongly changes over time.

■ OPTIMIZATION OF THE LOCAL DISSYMMETRY
FACTOR

We have hitherto focused on the optimization of the local
optical chirality C(r, ω) that is proportional to the absolute
chirality-induced signal in a spectroscopy experiment, that is, C
is responsible for the absolute signal difference between
measurements of systems with opposite chirality according to
eq 1. In some cases, one may be interested in the relative, rather
than the absolute, signal difference, in which case one has to
normalize the obtained signal difference with respect to the
absolute (chirality-independent) absorption signal. The result-

ing quantity, often called dissymmetry factor g, is responsible
for the signal contrast. Using CPL for excitation, the
dissymmetry factor is given by10

=
−
+

g
A A

A A( )CPL
LCPL RCPL

1
2 LCPL RCPL (25)

with the absorption of LCPL ALCPL and that of RCPL ARCPL.
Tang and Cohen defined a generalized dissymmetry factor gTC,
including pairs of arbitrary enantiomorphic electromagnetic
fields, that is expressed via10,13

ω
=g g

cC
U2 e

TC CPL (26)

wherein gCPL is the dissymmetry factor from eq 25, that is, the
dissymmetry factor obtained for CPL in free space. Considering
eq 26, it is obvious that for an optimization of gTC, the fraction
C/Ue is important instead of the optimization of C alone such
that |gTC/gCPL| > 1. Since an enhanced local optical chirality
C(r, ω) is often accompanied by an increased electric field
amplitude |Eloc(r, ω)|, the corresponding local electric energy
density

ω ω=
ϵ

U r E r( , )
4

( , )e
0

loc

2

(27)

is enhanced mostly as well. Thus, the optimal far-field
polarization for C(r, ω) does usually not coincide with that
for gTC(r, ω). Nevertheless, analogously to the optimization of
C(r, ω), it should be possible to optimize the local normalized
dissymmetry factor gT̂C(r, ω) = gTC(r, ω)/gCPL by means of the
far-field polarization. One has to consider in this case, however,
that increasing gT̂C can be carried out by significantly decreasing
Ue such that in effect the overall absorption is strongly reduced
and small signals result. For practical reasons, therefore, one has
to decide carefully whether the absolute or the relative signal is
the relevant quantity. Hence, for applications of molecular
chiral sensing or spectroscopy, one should analyze in addition
signal-to-noise ratios to find “optimal” external driving fields,
and very likely one should be interested in the right balance
between absolute chiral signal strength, that is, optimization of
C, and contrast, that is, optimization of ̂gTC.
It has to be mentioned that in eq 26 the magnetic energy

density Ub is neglected. A more precise equation was
introduced by Choi and Cho via11

ω γ
=

+
g g

cC
U U2 ( )e b

CC CPL (28)

wherein the parameter γ ∝ χ″/α″ depends on the investigated
specimen and is typically in the range ≈10−6 to 10−4.11 Hence,
eq 26 is only valid in the case that Ue ≫ γUb or, independently
from the specimen, Ue ≫ 10−2Ub. This leads to a limitation of
the maximal/minimal value of the generalized dissymmetry
factor and should be taken into account in an analytic
derivation for the optimization of gT̂C.
In this section, the definitions of the dissymmetry factor

consider only the electric and magnetic dipole response of the
chiral medium. However, if the electromagnetic fields vary
strongly across chiral molecules located in the vicinity of a
nanostructure, it might be necessary to include higher
multipoles for the calculation of g.75 Nevertheless, an
optimization of the chiral response in the near field of
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nanostructures via tuning the far-field polarization should be
possible.

■ SUMMARY AND OUTLOOK
In this work, we investigated theoretically the control of local
optical chirality enhancement in the near field of plasmonic
nanostructures by tuning the far-field polarization of the
external light field. We derived an analytic expression for the
optimal far-field polarization and demonstrated on the basis of
numerical simulations for two specific nanostructure assemblies
that the local optical chirality can be improved significantly in
comparison with the optical chirality of circularly polarized light
in free space. Optimal enhancement is achieved by using far-
field polarizations different from linear or circular. The
handedness of local optical chirality can be switched by
switching the optimal far-field polarization, and local optical
chirality can be coherently controlled over a continuous
frequency range by means of femtosecond polarization pulse
shaping. We showed that the symmetry properties of
nanostructures can be exploited to determine the optimal far-
field polarization. For a nanostructure that is at least C4v
symmetric with respect to the propagation direction of the
external light, circularly polarized light is the optimal far-field
polarization to enhance optical chirality in near-field regions
whose shapes are C4v symmetric, as well, with the same
principle axis and mirror-symmetry planes like those of the
nanostructure.
In conclusion, tuning the far-field polarization can be used to

control local optical chirality for any given nanostructure
geometry. This should enable enhanced chirally specific
interactions of light with molecular and other quantum systems
in the vicinity of specially designed nanostructures. Applications
are envisioned in chiral sensing of adsorbed molecules, time-
resolved chirality-sensitive spectroscopy, and chiral quantum
control. For the latter two cases it is of relevance that the time
structure of the optimal field can still be varied by means of the
spectral phase of one polarization component, while never-
theless retaining the optimality conditions derived above that
depend on the relative phase only.
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Rockstuhl, C.; Kley, E.-B.; Tünnermann, A.; Lederer, F.; Pertsch, T.
Chiral Metamaterial Composed of Three-Dimensional Plasmonic
Nanostructures. Nano Lett. 2011, 11, 4400−4404.
(29) Hentschel, M.; Schaf̈erling, M.; Weiss, T.; Liu, N.; Giessen, H.
Three-Dimensional Chiral Plasmonic Oligomers. Nano Lett. 2012, 12,
2542−2547.
(30) Shen, X.; Song, C.; Wang, J.; Shi, D.; Wang, Z.; Liu, N.; Ding, B.
Rolling Up Gold Nanoparticle-Dressed DNA Origami into Three-
Dimensional Plasmonic Chiral Nanostructures. J. Am. Chem. Soc. 2012,
134, 146−149.
(31) Zhao, Y.; Belkin, M. A.; Alu,̀ A. Twisted optical metamaterials
for planarized ultrathin broadband circular polarizers. Nat. Commun.
2012, 3, 870.
(32) Yin, X.; Schaf̈erling, M.; Metzger, B.; Giessen, H. Interpreting
Chiral Nanophotonic Spectra: The Plasmonic Born−Kuhn Model.
Nano Lett. 2013, 13, 6238−6243.
(33) Valev, V. K.; Baumberg, J. J.; Sibilia, C.; Verbiest, T. Chirality
and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals,
Recent Progress, and Outlook. Adv. Mater. 2013, 25, 2517−2534.
(34) Govorov, A. O. Plasmon-Induced Circular Dichroism of a Chiral
Molecule in the Vicinity of Metal Nanocrystals. Application to Various
Geometries. J. Phys. Chem. C 2011, 115, 7914−7923.
(35) Govorov, A. O.; Fan, Z. Theory of Chiral Plasmonic
Nanostructures Comprising Metal Nanocrystals and Chiral Molecular
Media. ChemPhysChem 2012, 13, 2551−2560.
(36) García-Etxarri, A.; Dionne, J. A. Surface-enhanced circular
dichroism spectroscopy mediated by nonchiral nanoantennas. Phys.
Rev. B: Condens. Matter Mater. Phys. 2013, 87, 235409.
(37) Zhang, H.; Govorov, A. O. Giant circular dichroism of a
molecule in a region of strong plasmon resonances between two
neighboring gold nanocrystals. Phys. Rev. B: Condens. Matter Mater.
Phys. 2013, 87, 075410.
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