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ABSTRACT: We develop a theoretical model of the
excitation and interference of surface plasmon polariton
(SPP) waves with femtosecond laser pulses and use the
model to understand the features in images from subfemto-
second time-resolved two-photon photoelectron microscopy
(2PPE−PEEM). The numerically efficient model is based on
the optics of SPP modes on multilayer thin films and takes
account of the excitation and interference by the incident light,
its polarization, the boundary shape on the film where the
plasmons are generated, the pulsed form of the excitation and the time integration associated with the PEEM method. The model
explains the dominant features observed in the images including the complex patterns formed in experiments involving orbital
angular momentum. The model forms the basis of an efficient numerical method for simulating time-resolved 2PPE−PEEM
images of SPP wave propagation. The numerics is extremely fast, efficient, and accurate, so that each image can take as little as a
few seconds to calculate on a laptop computer, enabling entire PEEM movies to be calculated within minutes.
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Surface plasmon polaritons (SPPs) are electromagnetic
waves coupled to the conduction electrons of a metal

that propagate along metal−dielectric interfaces.1−4 In thin
metal films, the coupling between the SPPs on the upper and
lower surfaces leads to two propagating eigenmodes.5 One of
the modes has most of the electric field outside the metal,
reducing Ohmic resistance and resulting in long-range
propagation.6 The other mode has more of the SPP electric
field confined within the metal and is characterized by high
damping losses7−12 and therefore short propagation lengths,
making these modes more difficult to study. Short-range SPPs
have been investigated using metal−insulator−metal (MIM)
waveguides, where the plasmon wavelength was reduced to 51
nm for 650 nm excitation wavelength.13 There have been some
attempts to explore the potential of long- and short-range
surface plasmons for imaging14 and focusing.15−21 However,
the techniques used in these experiments provide only static
information about SPP waves on surfaces. For example,
scanning near-field optical microscopy (SNOM) yields images
of the steady-state intensity distributions or interference
patterns.
Recent experiments using time-resolved two-photon photo-

emission (2PPE) combined with photoemission electron
microscopy (PEEM)22−28 have provided dynamic information
on SPP wave propagation, including both long- and short-range

modes. This method derives from studies of metal surfaces29,30

in which a laser pulse directed onto a metal surface excites the
conduction electrons, with a distribution that is probed a short
time later by a second laser pulse. The energy provided by two-
photon absorption is sufficient to eject electrons from the
surface, which can then be used for image formation in an
electron microscope. Changing the time delay between pulses
leads to information about the time evolution of the excited
electron distribution. Since the electron yield in the 2PPE−
PEEM experiment is low, a large number of repeated laser
pulses is required to build an image with acceptably low levels
of shot noise. The time-integration required by this process
adds another level of complexity to the interpretation of the
photoelectron images.
In this paper we analyze the excitation and interaction

processes between SPPs and femtosecond laser pulses and
model the 2PPE−PEEM process used to create images of SPP
excitation and include the effect of the time integration, which
results in a model linking the properties of the SPPs and the
electron microscope image. The model is based on the optics of
SPP excitation and propagation on multilayer thin films, with
the two-photon emission proportional to the fourth power of
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the total electric field distribution on the metal surface. We
compare experimental 2PPE−PEEM images with the model, in
particular, recent experiments using orbital angular momen-
tum,28,31 which allows us to identify the physical mechanisms
underpinning the key features. The model provides an efficient
method for the numerical simulation of time-resolved 2PPE−
PEEM images and movies of SPP waves propagating on metal
films with complicated boundaries. Importantly, the theory
underpinning the model leads to expressions for the vector
electric field of the SPP wave excited from arbitrary-shaped
boundaries. These expressions can be used to model other
experiments, such as those performed with Scanning Near-field
Optical Microscopy (SNOM) and provide insights into the
vector properties of SPPs with orbital angular momentum.

■ TIME-RESOLVED 2PPE−PEEM OF SURFACE
PLASMONS

Excitation of Surface Plasmons. To model the photo-
electron yield from the metal surface, we assume the total
electric field at any point can initiate a two-photon absorption
process resulting in electron emission. Coherent two-photon
absorption is associated with the third-order nonlinearity of the
electric susceptibility of the material.32 For isotropic materials
where the polarization and field directions are parallel, the
polarizability induced by the third-order nonlinearity can be
expressed in terms of an effective susceptibility P(3) =
ϵ0χ

(3)|E|2E, where it is assumed that the nonlinear mixing
occurs at the one frequency ±ω. The absorption is then
proportional to Im(P*·E) = ϵ0χ

(3)*|E|4. In our derivation we
take the laser light incident normal to the surface, a
configuration that has been used recently for 2PPE−PEEM
experiments.31,33 The laser pulses incident on edges, grooves,
or ridges in the metal surface induce oscillating surface charges
that launch the surface plasmon waves. Since the electrons are
ejected from the surface of the metal, for simplicity we only
model the surface plasmon electric field at the top of the metal
and take the electron yield proportional to the fourth power of
the total electric field (Figure 1).

The 2PPE−PEEM experiment requires a conducting
substrate, which in our experiments consists of silicon with
the gold film or crystal on top. Since silicon has a thin native
oxide layer, the sample is a multilayer thin-film on a silicon
substrate. The properties of surface plasmon polaritons (SPPs)
associated with a multilayer thin film structure can be derived
from Maxwell’s equations by seeking solutions for self-sustained

(although damped) oscillations.5 With the films lying in the x −
y plane, where r = xx ̂ + yy ̂ and with the permittivity ϵ(z) piece-
wise continuous in z, the wave equation for the plasmon vector
potential Ap(r, z) = Ar(r)u(z) can be separated into two
equations

α κ δ∇ + = ̂ ·̂ ̂ −r n e EA r A r r r( ) ( ) ( ) ( )r r r b I
2 2

(1)

and

α∂
∂

+ ϵ − =u z
z

k z u z
( )

( ( ) ) ( ) 0
2

2
2 2

(2)

where k = ω/c is the wavenumber and ∇r
2 is the two-

dimensional Laplacian in the x − y plane. The equation for the
in-plane vector potential Ar(r) contains a source term that is
nonzero at boundaries located at rb in the metal film, where the
incident light field EI = EIe ̂ induces a surface charge σ = (ϵb −
ϵm)n ̂·EI to drive the plasmon oscillations, with ϵb − ϵm the
permittivity difference across the boundary. The source of the
plasmon vector potential κr(̂n̂·e)̂δ(r − rb)EI in the direction r ̂ is
proportional to this surface charge, where κ is a constant and n ̂
is a unit vector normal to the boundary. The solution of eq 2
yields a set of eigenvalues α that are the propagation constants
for the different plasmon modes in the multilayer film,5 with
u(z) = exp(−γz), γ2 = α2 − ϵmk

2 and ϵm is the relative
permittivity of the metal at the top surface z = 0. (Note the
definition of γ here differs from that of Davis5 − this parameter
has a large imaginary component, but here we redefine it to
make the imaginary part explicit so that γ is predominantly
real.)
To solve the inhomogeneous problem eq 1 we find the

Green’s function in the x − y plane,34 which yields a solution

∫ γ α α≈ ̂ + ̂ ·̂ ′̂ ′E k r i z e n H r rA r( ) ( / ) ( )( ) ( )dr L s s
2

0
(1) 2

(3)

where H0
(1)(αr) = J0(αr) + iY0(αr) is the Hankel function of the

first kind involving Bessel functions J0(αr) and Y0(αr). The
Hankel function is the exact solution to the problem of the
initiation and propagation of a wave from an arbitrarily shaped
boundary in two dimensions. The normal to the ridge or
boundary edge where the surface charge is excited is n ̂′ =
n ̂(r′)δ(r′ − rb), which depends on position, and the delta
function sets n ̂′ ≠ 0 only when r′ locates a point on a line (such
as a groove or ridge) where the incident light can excite a
plasmon. For brevity, we set rs = r − r′ and rs = |rs| as the
distance from the source point r′ to the point of observation
and rŝ = rs/rs. The z ̂ component was found by requiring that ∇·
Ap = 0 away from the source. This requires a derivative
dH0

(1)(x)/dx ≈ iH0
(1)(x), where the approximation is very

good when x = αrs > 3 or rs > λp/2 is greater than about half a
plasmon wavelength λp from the source. The factor EL absorbs
the unknown constants such as the amplitude of the incident
field and the efficiency of excitation of the plasmons. The
electric field Ep = ikAp is then

∫ γ α
α≈

̂ − ̂
·̂ ′̂ ′γ−z E e

i r z
k

e n H r rE r( , )
( )

( ) ( )dp L
z s

s0
(1) 2

(4)

Since we are interested in the electric field at the surface of the
metal, we set z = 0 and no longer show the z dependence
explicitly.
In the ideal case of an infinitely long boundary line, the

solution of eq 4 reduces to a plane wave propagating in a
direction n̂ normal to the line, given by

Figure 1. Sketch of the 2PPE−PEEM process that generates surface
plasmons at the boundary of a gold film on a substrate.
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where r is the perpendicular distance from the line. Since the
boundary normal contains the delta function, the surface
integral over the boundary reduces to a line integral along the
boundary. The plane wave solution eq 5 is for a single
frequency,5 since γ and α depend on k = ω/c. For a distribution
of frequencies, g(ω′), as occurs with an incident pulse of light,
the time variation of the wave is obtained from the Fourier
transform of Ep(r,ω′) g(ω′) exp(−iω′t) with respect to ω′. We
model the incident light pulse by a Gaussian function centered
at frequency ω. When multiplied into eq 5 and Fourier
transformed, we obtain

γ α= ·̂ ̂ ̂ − ̂ α ω− −⎜ ⎟⎛
⎝

⎞
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The Gaussian g(ω′) is transformed into a pulse of width Δt in
the time domain that we take centered at time ta,
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where α = α′ + iα″ is resolved into real and imaginary
components. In the derivation we assumed that α varies linearly
with frequency about the center frequency ω of the pulse. We
then evaluate α at ω, which is equivalent to neglecting
dispersion of the wavepacket. As defined, eq 7 produces a
Gaussian profile with a full-width of Δt between the e−1 points.
To include the time response of the SPP for an arbitrary

boundary we could use eq 4 and take the Fourier transform
over frequency. However, the result is difficult to obtain in
closed form and numerical evaluation is computationally
intensive. Instead we use the plane-wave solution as a guide
and consider an approximate solution based on eq 4 but replace
the plane wave in eq 6 by the Hankel function
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which leads to an expression for the SPP generated from an
arbitrary boundary by a pulse of light. This equation has the
correct asymptotic forms for an infinitely long boundary, which
reproduces eq 6, and for the infinitely long pulse, which is eq 4.
To simulate the 2PPE experiment on a metal film with a

complicated shape, the boundary is represented by a set of
straight line segments. Provided enough line segments are used
such that any deviations from the true boundary are much
smaller than the plasmon wavelength, we would expect the
model to accurately represent the plasmon wave away from the
boundary. In practice, the integral is evaluated numerically over
each line segment on the boundary. For an infinite line, this
equation reproduces the plane wave result. The Hankel
function in eq 8 represents a Huygens’ wavelet propagating
in two dimensions and the emission from the boundary is
obtained by a sum of these wavelets, as given by the integral. An
example is shown in Figure 2.
Photoemission Process. In the photoelectron microscopy

experiment, electrons are ejected from the metal by two optical
pulses and the resulting electron emission is integrated over a
long period of time. The first pulse interacts with the entire
surface of the metal and launches a plasmon wave Ep,1 from the
boundary r = r0 at time t1. The second pulse centered at time t2

generates a surface plasmon wave Ep,2 that also propagates from
r = r0. For multiple boundaries, or lines of plasmon sources, we
can generalize the surface plasmon source position to rn for the
nth source line with plasmon propagation direction nn̂. It is also
useful to separate the Gaussian pulse from the position
dependence of the wave, as in eq 8, so that the plasmon
propagating from the nth boundary is Ep,a(sn, t) = Ep,a(sn)
Ga(sn, t)exp(−iω(t − ta)), where sn = r − rn. The total electric
field at some time t at the metal surface is given by the sum of
the two incident light pulses, EI,1 and EI,2, and the sum of all the
surface plasmons they produce. To simplify the expressions, we
number the plasmon sources from n = 1 to N and let n = 0
represent the incident light pulses, so that the total electric field
can be written as

∑ ∑= ω

= =

− −G s eE E s( ) ( )T
n

N

a
n a n a n t

i t t

0 1

2

, ,
( )a

(9)

where a is summed from 1 to 2, representing the two pulses.
The coherent two-photon absorption that leads to electron

emission is proportional to I2 = (ET*·ET)
2 and the PEEM signal

measured in an experiment is proportional to the square of the
intensity integrated over all time. From eq 9, we can write the
PEEM signal as

∫ ∑ ∑= ω

−∞

∞

= =

P G s t e tE s( ) ( , ) dc
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a
n a n a n

i t

0 1

2

,

4

a
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Note that by taking the modulus-square, the common time
factor exp(−iωt) no longer appears, leaving only the Gaussian
envelope Ga(sn, t) depending on time. As shown in eq 10, the
incident light and plasmon electric fields have fixed profiles with
position over the surface (given by En, a(sn)) but are modulated
by a traveling Gaussian pulse Ga(sn, t) that depends only on sn,
the distance from the line in the direction of the normal. This
means the complex field vectors including eiωta can be
precomputed at each position on the surface and those
corresponding to a given time delay ta summed together. For
the time integral, these sums are multiplied by the appropriate
Gaussian envelope Ga(sn, t) evaluated at each time step and
summed together, thus, performing the integration. Moreover,
the time step dt required in the integral needs only to be small
enough to integrate the Gaussian envelope, which varies over a
time Δt, being the width of the light pulse, rather than over a
time 1/ω being the period of the light wave that is much

Figure 2. Example showing how plasmons are simulated by
representing a complicated boundary by straight line segments. (a)
Each line segment on the boundary is divided into sources of Huygens’
wavelets, calculated from the Hankel function H0

(1)(α′r). The response
of an individual line is the sum of all the source points (represented by
the arrow), which is equivalent to the integral eq 8. (b) Sum of the
wave contributions from all the source lines leads to interference
patterns; two line contributions are shown in the figure.
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smaller. Thus, we find that only a small number of terms are
required to perform the integral, which then becomes efficient
to compute. This procedure, although approximate, greatly
speeds up the computation and enables us to generate many
simulations as functions of pulse delay time.
Recently it was shown that the efficiency of the 2PPE

emission depends on the vector direction of the electric field
relative to the surface normal,35 with the emission from the in-
plane fields weaker than the emission from the out-of-plane
fields. It is straightforward to include this experimental finding
into the model as an extra scale factor multiplying Ez.
Moreover, we have complete control of the polarization states
of the incident light pulses, so that more complex polarization
sequences can be modeled, such as pumping with a given
helicity and probing with the opposite helicity or with linearly
polarized light.
General Features of 2PPE−PEEM Images. To under-

stand the features observed in the 2PPE−PEEM experiments, it
is instructive to consider one ridge or edge generating a surface
plasmon with an amplitude small compared to the incident
light. We assume that the two light pulses have the same
polarization vector e ̂ and the amplitudes are real, so that E1 =
eÊ1 and E2 = eÊ2. There are two plasmon waves generated at
the boundary, one from each light pulse, propagating in
direction n ̂. These waves can be written as

η γ α

η γ α

= ·̂ ̂ ̂ − ̂

= ·̂ ̂ ̂ − ̂

α

α

e n i n z E e

e n i n z E e

E

E

( )( )

( )( )

p
i s

p
i s

,1 1

,2 2 (11)

where η is a scale factor. We first write the incident light fields
as EI(t, t1, t2) = eÊI(t, t1, t2), where EI(t, t1, t2) = E1G1(0,t)e

iωt1 +
E2G2(0,t)e

iωt2 and the plasmon fields as Ep(t, t1, t2, s) = Ep,1(s)
G1(s, t)e

iωt1 + Ep,2(s)G2(s, t)e
iωt2. In the following, we suppress

the time and position dependences, for the sake of brevity. The
electron emission is proportional to

= | + |

= | | + | | + *·

≈ | | | | + *·
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E E E E
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2 4
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where quadratic and higher orders of |Ep| are ignored, since by
assumption they are small. When integrated over time, we find
a static background signal arising from |EI|

2, and an interference
term 4Re(EI*·Ep) that depends on products of Gaussians in the
form G1(s1, t)G2(s2, t). If the pulse delay is long enough that the
two light pulses do not overlap, then products of terms like
G1(0,t)G2(0,t) integrate to zero. Likewise, G1(0,t)G2(s, t) is
zero because the second plasmon is created after the first pulse
has gone. However, we need to retain G2(0,t)G1(s,t) because
the first plasmon still exists when the second pulse arrives. This
means that |EI|

4 ≈ (E1G1(0,t))
4 + (E2G2(0,t))

4 and eq 12 can be
approximated by
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The time integral of eq 13 gives
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This result shows three main features of the 2PPE−PEEM
images of SPPs. The first term in eq 14 is the electron emission
associated with the two optical pulses, with electrons emitted
uniformly over the entire metal surface. These fields provide a
uniform background signal. The next term is the interference
between a given light pulse and the plasmon it excites. This
creates a sinusoidal pattern fixed in space with a period related
to the plasmon wavelength, λp = 2π/α′. The fixed pattern
decays with distance from the boundary, depending on the
pulse width of the incident light and the decay length 1/α″ of
the plasmon. The last term represents the interference between
the second light pulse and the first plasmon. This also has a
sinusoidal variation with a period equal to the plasmon
wavelength. However, this pattern appears like a traveling
wave with an amplitude peaked at a position α′s − ωt21 = 0 that
depends on the light pulse delay time. A series of images of
electron emission for a range of delay times t21 will yield
information about the propagation of the plasmon waves. Such
oscillatory behavior is consistent with observations of 2PPE−
PEEM experiments on metal films.31,36

The electron yield described by eq 14 also depends on |e·̂n̂|2.
Light linearly polarized at angle ψ incident on a boundary with
orientation n ̂ = x ̂ cos θ + y ̂ sin θ launches a plasmon with an
amplitude proportional to |e·̂n ̂|2 = cos2(θ − ψ). For boundary
orientations such that θ − ψ = ±π/2 there are no plasmons
excited. Thus, we expect for linear polarization that the
plasmon image depends on the polarization angle, which is
consistent with experimental observations presented below.
With circularly polarized light the polarization vector is

̂ = ̂ ± ̂e x iy( )/ 2 so that |e·̂n ̂|2 = 1/2. Thus, we observe that
plasmon generation and interference with the incident light is
independent of the helicity (±) of the circular polarization.
Moreover, since we can add multiple boundaries to eq 14 and
not change the result regarding the interference between the
incident light and the surface plasmons, then the helicity of the
circular polarization is not observable irrespective of the
boundary shape.28 Circular polarization effects may be
observable with interference between two surface plasmons
propagating in different directions. For example, plasmons
propagating in directions θ1 and θ2 will lead to an interference
pattern with a cross-term (e*̂·n ̂1)(e·̂n ̂2) = cos(θ2 − θ1) ± i
sin(θ2 − θ1) that depends on the relative phase of the plasmons
and the helicity of the light. To observe such interference
requires relatively strong plasmon signals that can be
distinguished from the incident light-plasmon interference
pattern. We will show experimental evidence of this effect in
the following section.
Examples of the PEEM signals calculated from eq 14 are

shown in Figure 3. The input data for the calculation are
obtained from the short-range plasmon listed in Table 2. The
curves have been offset for clarity. The PEEM profiles show the
characteristic static oscillation pattern at the boundary of the
metal (s = 0) and a traveling wave pulse that moves with the
time delay and decays with distance.
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■ EXPERIMENTS AND SIMULATIONS
We have performed a large number of 2PPE−PEEM
experiments on single crystals of gold machined using focused
ion beams.31 In this section we compare some of the
experimental results with simulations based on the theoretical
model.
SPP Focusing. In the first experiment, a 22 nm thick gold

flake on a silicon substrate was milled into a circle of diameter 2
μm and a grating structure formed around it to couple the
incident light into surface plasmons, which then propagate to
the center of the circle. The silicon substrate has a 2.5 nm
native oxide film of silica. The experiment consists of repeatedly
sending two light pulses with wavelengths λL = 800 nm and
pulse widths of about 16 fs onto the sample and integrating the
electron emission over time. By collecting images of the
electron emission with different delay times between each pair
of pulses, the time response of the surface plasmons can be
observed. However, as we have discussed previously, the
integration over time creates an image that consists of the
correlations and interferences between several sets of plasmons
and the optical pulses.
Using the method of Davis5 we find there are two plasmon

modes associated with the gold flake. The short wavelength
plasmon mode created with λL = 800 nm light has a
wavenumber αs = 3.58 × 10−2 + i5.12 × 10−4 nm−1 that
corresponds to a plasmon wavelength of λs = 175 nm and a
decay distance 1/αs″ = 1.95 μm. The gamma factor for gold is γs
= 5.21 × 10−2 − i1.00 × 10−4 nm−1 that we approximate as real.
The frequency of the incident light pulse is ω = 2.35 × 1015 rad
s−1. The long wavelength plasmon mode has αl = 8.00 × 10−3 +
i1.31 × 10−4 nm−1 and γl = 3.89 × 10−2 − i5.75 × 10−4 nm−1.
Two images taken with different pulse delays from a series of

2PPE−PEEM experiments are shown in Figure 4 and we
compare this with simulations, based on eqs 8 and 10. The
parameters used in the simulation are given in Table 1. The
incident light has unit amplitude E1 = E2 = 1.0 and the
unknown plasmon amplitudes are adjusted to obtain a good fit
to the data. The circular boundary was represented by a
polygon with 32 sides. Profiles through the two sets of images
are shown in Figure 5. The simulation data were scaled in
amplitude and offset to align the curves with the experimental
data. The simulation provides an excellent representation of the
electron yield obtained in the experiments, including the
excitation dependence of the orientation of the boundary

relative to the direction of polarization of the incident light
(simulation movies are available as Supporting Information).

Figure 3. A PEEM signal simulated using eq 14 with data in Table 2
for the short range plasmon, showing the fixed pattern signal and a
pulse that changes position with time delay (curves offset for clarity).

Figure 4. Comparison between experiment and the simulation for a
short-range plasmon focusing experiment: (a, b) 2PPE−PEEM
measurement corresponding to two time intervals between the two
optical pulses. The arrow shows the direction of linear polarization of
the incident beam; (c, d) simulations based on eq 10 and numerically
integrating over time. The images were calculated at time delays (c) t2
− t1 = 16.3 fs and (d) t2 − t1 = 17.2 fs. The circular gold disc was
modeled by a 32-sided polygon.

Table 1. Simulation Parameters for Figures 4 and 5

incident wavelength (nm) 800
incident pulse width (fs) 16
polarization angle 55°
gold thickness (nm) 22
αs (nm

−1) 3.58 × 10−2 + i5.12 × 10−4

γs (nm
−1) 5.21 × 10−2

αl (nm
−1) 8.00 × 10−3 + i1.31 × 10−4

γl (nm
−1) 3.89 × 10−2

amplitude ratio (ηlγl)/(ηsγs) 0.5

Figure 5. Experiment (points) and simulations (solid lines) for the
two time delays shown in Figure 4. The simulations were scaled in
amplitude to match the experimental data. The curves have been offset
for clarity.
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SPP Propagation on a Gold Flake. As another example,
simulations were compared with a 2PPE−PEEM experiment on
a complex gold flake, shown in Figure 6. Since the model

simulates the PEEM signal from any number of straight line
segments, we approximate the flake geometry with 17 straight
lines. The data used in the simulation are given in Table 2 and,

again, the time integral eq 10 of I2 was performed numerically.
Because of the thickness of the gold flake, the long-range
surface plasmon mode has a dominant effect on the electron
emission, although there is still evidence of the short-range
mode. Again we see excellent agreement between the
simulation and the experiment.
SPP Orbital Angular Momentum. Recently it was shown

that boundaries cut into gold films in the form of Archimedean
spirals can generate plasmons with orbital angular momentum
when excited with circularly polarized light.18,28,31 In this
section we examine the theory of such structures and model the
experiments on them using our efficient numerical method.
Theory of SPP Orbital Angular Momentum Excitation and

Interference. To understand the features of the experiments,
we take an approximate solution of the wave Ep(r,0) using eq 4.
For distances far from the source (i.e., far from the boundary),

the Hankel function is approximately H0
(1)(x) ≈ πx2/ exp(Ix

− iπ/4). We assume the boundary has a spiral radius that varies
with angle θ according to R0 + lθ/α′, where l is the integer
number of wavelengths that the radius increases over an angle
of 2π and R0 is the starting radius (an example is shown in
Figure 7 for l = 1). The observation point from the center of
the spiral is r = r(cos ϕx ̂ + sin ϕy)̂ and the boundary is located
at r′ = (R0 + lθ/α′)(cos θx ̂ + sin θy)̂. For r ≪ R0 we
approximate α′|r − r′|≈ α′ (R0 − r cos(θ − ϕ)) + lθ.
Furthermore, the normal to the boundary is then approximately
n ̂′ ≈ cos θx ̂ + sin θy.̂ The polarization vector for circularly

polarized incident light is e±̂ = (x ̂ ± iy)̂/√2, where the s = ±1
determines the helicity, so that e±̂·n ̂′ ≈ e±iθ/√2 = eisθ/√2. The
inward directed unit vector is rŝ ≈ −n ̂′, which can also be
expressed in polar coordinates by defining unit vectors e ̂± = (x ̂
± iy)̂/√2 that have the same form as the circular polarization
vectors. Then we can write rŝ = −(e−̂eiθ + e ̂+e−iθ)/√2. Since we
are interested in the SPP fields near the center of the spiral, we
can ignore losses over this small region so that the position
dependence of the electric field from eq 8 is approximately
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with Jn(x) Bessel functions of the first kind and A is a constant.
The resulting plasmon field shows a complicated dependence
on the orbital angular momentum l imparted by the boundary,
on the helicity (s = ±1) of the excitation circular polarization,
sometimes referred to as “light spin”, and on the radial
dependence of the electric field vector that gives rise to terms
involving e ̂(±). Such “spin-orbit” coupling in light fields is
related to the topological nature of the fields.37,38 When this
SPP field interferes with the electric field of the incident light
pulse, the interference term EI*·Ep in eq 12 involves the
complex conjugate e±̂*·e ̂(±). This term is zero if the two vectors
have opposite helicity (i.e., − + or + − ) and is nonzero
otherwise. Thus, if the plasmon is probed with light of the same
helicity as it is excited, the interference term involving eq 15
EI*·Ep ∝ eilϕJl(α′r) is independent of the helicity of the circular
polarization. This surprising result was predicted in the
previous section and has been confirmed in recent experi-

Figure 6. Experiment (a) and simulation (b) of the 2PPE−PEEM
image of a gold flake calculated at t2 − t1 = 12.8 fs after coincidence of
the light pulses. The arrow shows the direction of the incident linear
polarization.

Table 2. Simulation Parameters for Figure 6

incident wavelength (nm) 800
incident pulse width (fs) 16
polarization angle −45°
gold thickness (nm) 37
αs (nm

−1) 3.32 × 10−2 + i3.57× 10−4

γs (nm
−1) 5.04 × 10−2

αl (nm
−1) 8.03 × 10−3 + i4.62× 10−5

γl (nm
−1) 3.87 × 10−2

amplitude ratio (ηlγl)/ηsγs) 2.0

Figure 7. 2PPE−PEEM experiment (a, b) and simulation (c, d) for a
spiral with a 2π phase shift anticlockwise around the boundary. (a)
Left circular polarization (electric field rotating anticlockwise in the
plane); (b) right circular polarization; (c) simulation LCP; (d)
simulation RCP. The experimental images have been masked to
highlight the plasmon spiral region; outside this region is the coupling
grating and an outward propagating plasmon.
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ments.18,28 If the plasmon fields are strong, which they can be
near the center of the spiral, it is possible to observe
interference associated with the z ̂ fields which has the form
Jl±1
2 (α′r) that does show a dependence on the helicity of the
circular polarization relative to the direction of the induced
orbital angular momentum. Note that by probing the SPP field
with light of helicity different from the excitation field, different
components of the SPP field will appear in the interference
pattern. For example, exciting with e+̂ and probing with e−̂
extracts the term with l + 1 + 1 = l + 2, whereas probing with
linearly polarized light will extract those vector field
components aligned with the polarization direction.
Experiments on SPPs with Orbital Angular Momentum. In

the first experiment, we examine the effect of a spiral excitation
that has a single 2π phase shift around the boundary, as shown
in Figure 7 for left and right circularly polarized light. The
sample was a 22 μm thick gold flake, and therefore has similar
plasmon modes as in Table 1. The simulation shows good
agreement with the experiments assuming there is no long-
range SPP mode excited. The plasmon is predominantly a short
wavelength mode and there is evidence of plasmon−plasmon
interference at the center. With l = 1 then for the two
polarizations we expect the PEEM signal near the center of the
spiral for plasmon−plasmon interference to follow J2

2(α′r) for
left circularly polarized (LCP) light and J0

2(α′r) for right
circularly polarized (RCP) light. The Bessel function J2(x) is
zero at x = 0 and has its first maximum at x = 3.06. This means
the distance to the first maximum is r = 3.06α′ ≈ 85 nm, which
compares reasonably with the experimental result of r = 96 ± 5
nm. For RCP, J0

2(α′r) is maximum at the center, which is what
we observe. These findings provide good evidence that we have
excited the l = 0 and l = 2 modes of the surface plasmons.
Because of the simplicity of the boundary, simulation movies
(available as Supporting Information) can be computed
efficiently using our method, taking less than 5 min each.
It is straightforward to increase the total phase shift around

the spiral by increasing the distance as a function of angle. Since
all phases that differ by 2π are equivalent, the spiral can be
broken into segments. An example is shown in Figure 8 that has
a 4 × 2π = 8π phase shift anticlockwise around the boundary or
l = 4. This structure was milled into a gold flake 22 μm thick as
in the previous example. As before, we see some difference
related to the handedness of the circularly polarized light, but
the plasmon intensity is relatively weak so that the plasmon−
plasmon interference is mixed with the plasmon-incident light
interference near the center of the spiral. The predominant SPP
wave is the short wavelength mode. Again, the simulation
demonstrates good agreement with the experiment (simulation
movies are available as Supporting Information).
In the final example, we show an l = 20 spiral that was

created on a 100 μm thick gold film where the long wavelength
mode dominates. Figure 9 shows the 2PPE−PEEM images at
three different pulse delays when illuminated with RCP light.
The first plasmon pulse is seen to spiral inward (Figure 9a)
where it creates a 20-point interference ring that rotates about
the center (Figure 9b), after which the wave spirals out again
(Figure 9c). The numerical model also shows this behavior
(Figure 9d−f; refer to the Supporting Information for a
simulation movie). In Figure 10 we show the real part of
ei20ϕJ20(α′r) as a function of position with α′ = 8.03 × 10−3

nm−1. This demonstrates the dark central region, associated
with the functional form of the Bessel function, and the 20
bright maxima that correspond to the overlap of the first

maximum of the Bessel function and the maxima of Reei20ϕ =
cos(20ϕ), where ϕ is the angle about the center.

■ CONCLUSIONS
We have analyzed the excitation and propagation of surface
plamon waves excited on metal films by femtosecond pump−
probe light pulses including their mutual interference and the
subsequent two-photon emission of electrons that are imaged
in an electron microscope. We developed an extremely fast,
accurate and numerically efficient model of the process showing
that most of the observed effects arise from the interference
between the electric field of the probe pulses and the vector
electric fields of the surface plasmons. The model explains the
important features of the PEEM images, such as the SPP waves
close to the excitation boundary that remain stationary with
pulse delay, and oscillations initiated by the original pump pulse
that propagate with a phase determined by the pulse delay. For
weak plasmon amplitudes, the model shows that the electric
field of the probe must be aligned with the electric field of the
surface plasmon, so that no image is expected when the field
directions are perpendicular. This is a necessary condition for
the electric fields to interfere. Under conditions where there is
plasmon focusing, the plasmon fields can be strong enough to
initiate electron emission without interaction with the incident
light. This is observed by interference effects that change with
the helicity of the circularly polarized incident light.

■ EXPERIMENTAL SECTION
Device Fabrication. The samples were fabricated using

single crystal gold platelets. The single crystalline gold platelets
were synthesized electrochemically by dissolving a gold wire
into a hydrochloric acid based electrolyte. During the reaction,
the gold platelets precipitate onto a silicon substrate which has
a 2.5 nm thick native oxide layer. The structures in Figures 6, 9,

Figure 8. 2PPE−PEEM experiment (a, b) and simulation (c, d) for a
spiral with a 4 × 2π = 8π phase shift anticlockwise around the
boundary. (a) Left circular polarization (electric field rotating
anticlockwise in the plane); (b) Right circular polarization; (c)
simulation LCP; (d) simulation RCP. The experimental images have
been masked to highlight the plasmon spiral region; outside this region
is the coupling grating and an outward propagating plasmon.
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and 10 are milled out of a single crystalline gold platelet of 20
nm thickness utilizing a focused gallium ion beam (FIB). FIB
milling is performed on the FEI Helios 600 D 534 Machine
located at the Institute of Applied Optics, University of
Stuttgart.
2PPE−PEEM Measurement. The experiments were

performed using the time-resolved photoemission microscope
(PEEM) at the University of Duisburg-Essen. In brief, the
microscope detects the spatial distribution of photoelectrons

liberated via a nonlinear electron emission process induced by a
femtosecond laser pulse. To image SPPs at their native
wavelength, we use normal incidence of the laser pulses
relative to the surface plane.33 Time-resolved experiments are
possible in a pump−probe scheme, where (simplified) a first
laser pulse excites a SPP wave, while a second, delayed, laser
pulse may liberate a photoelectron. Our optical setup, centered
around a Pancharatnam’s phase stabilized interferometer, has
been described previously39 and provides us with a relative
temporal accuracy of the pump−probe experiment of <50
attoseconds. With such time-resolution, it is possible to image
the propagation and interaction of SPPs in slow-motion.36
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2PPE−PEEM simulation movies and calculation times.
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plasmons excited from a circular boundary. Figure
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plasmons excited with left circularly polarized light on a
spiral boundary with a 2π phase shift. Figure 7rcp.mp4:
As above but with right circularly polarized light. Figure
8lcp.mp4: Simulation of PEEM data of short-range
plasmons excited with left circularly polarized light on a
spiral boundary with a 4 × 2π phase shift. Figure
8rcp.mp4: As above but with right circularly polarized
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