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Using localized surface plasmons, the magneto-optical response of dielectric thin films can be resonantly
amplified and spectrally tailored. While the experimental realization and numerical simulation of such
systems received considerable attention, so far, there is no analytical theoretical description. Here, we
present a simple, intrinsically Lorentz nonreciprocal coupled oscillator model that reveals the underlying
physics inside such systems and yields analytical expressions for the resonantly enhanced magneto-optical
response. The predictions of the model are in good agreement with rigorous numerical solutions of
Maxwell’s equations for typical sample geometries. Our ansatz is transferable to other complex and hybrid
nanooptical systems and will significantly facilitate device design.
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Hybrid magneto-optical (MO) and plasmonic materials
have recently attracted a lot of interest, as this combination
allows for magnetic tuning as well as for nonreciprocal
effects [1–8]. By leveraging localized plasmon modes, the
MO response of conventional materials can be resonantly
amplified and spectrally tailored.
In the simplest approach, metallic MO nanoparticles

[9–13] are utilized to enhance the MO response in
reflection geometry (i.e., the MO Kerr effect). A signifi-
cantly stronger MO response can be achieved in trans-
mission [14–17]. Here, the polarization plane of the
transmitted light is rotated by an angle that is proportional
to the magnetic field and to the material thickness. This
effect is termed Faraday effect [18].
It was shown recently that the Faraday rotation [14] and

also the transverse MO Kerr effect [4] of a dielectric MO
film can be enhanced by an order of magnitude through
inclusion of a resonant plasmonic grating leading to a
waveguide-plasmon-polariton (WPP) dispersion [19,20].
By varying the grating and nanowire geometry, the maxi-
mal polarization rotation enhancement can be tuned to
arbitrary spectral positions [15]. Such structures exhibited a
Faraday rotation of up to 4.2° for a thickness of 220 nm,
while maintaining a high transmission of over 25% [15].
Hence, they are very relevant for possible devices, such as
thin-film Faraday rotators and isolators as their perfor-
mance data exceed other approaches considerably.
In this Letter, we present a simple coupled oscillator

model that unravels the relation between the WPP quasi-
particle and the enhanced Faraday rotation of such systems
by providing analytical expressions for the magneto-optical
response. The Lorentz nonreciprocity of the oscillator
model is intrinsically incorporated via the Lorentz force,
which is proportional to v ×B.
The geometry of such a hybrid structure is depicted in

Fig. 1(a). It consists of a dielectric MO thin film with an

attached one-dimensional gold grating on top. The incident
light is assumed to be linearly polarized and impinges on
the sample along the z direction. The polarization direction
with an electric field perpendicular (parallel) to the gold
wires will be referred to as xðyÞ polarized. Figure 1(b)
depicts the corresponding mechanical analog of the optical
system, where each relevant optical excitation is repre-
sented by a mass suspended by a linear spring. The
coupling between the different excitations is modeled by
interconnecting springs. All masses are assumed to be
charged and driven by the external light field. Because of its
periodicity, the gold grating acts primarily as a waveguide
coupler and allows for the far-field excitation of transverse
electric (TE) and transverse magnetic (TM) polarized
quasiguided waveguide modes inside the MO film. In
the absence of the magnetic field, the TE (TM) waveguide
modes can only be excited by yðxÞ polarized incident light.
Thus, the waveguide mod+es are modeled by one mass
each, which is restricted to move only along the x or y

FIG. 1. (a) Schematic drawing of the hybrid magnetoplasmonic
nanostructure. (b) Mechanical analog that represents the coupling
of the relevant optical excitations. (c) Simplified oscillator model
providing analytical solutions.
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direction. The second purpose of the gold wires is to
provide a localized plasmon resonance, which can be
excited for x-polarized light. This plasmonic resonance
is taken into account by an oscillator moving in x direction
(labeled P). Because of the field overlap, the plasmonic
resonance is coupled to the TM waveguide mode [19,20].
The dielectric response of the MOmaterial itself is modeled
by the red mass, which can move within the xy plane and is
subjected to a Lorentz force [21] in the xy plane due to a
static magnetic field B oriented along the z direction.
The oscillator system in Fig. 1(b) possesses 5 degrees of

freedom. Its motion is described by five coupled second
order linear differential equations. While these equations
can be solved exactly, it is impossible to derive closed
expressions for its eigenmode frequencies. To simplify the
model and allow for the analytical calculation of the
eigenmode frequencies, a series of proper approximations
can be applied.
First of all, neglecting the dispersion effects by the MO

material itself yields significant simplification. This is
achieved by assuming the driving frequency to be far away
from the MO oscillator resonance and the impact of the
driving force on the MO oscillator (i.e., the associated
coupling constant) to be relatively small, resulting in a
reduced system of three coupled second order equations.
Furthermore, in a rotating wave approximation, which is
valid when the driving frequency ω is close to the
eigenfrequencies Ωj (j ¼ TE, TM, P) of the individual
oscillators, the second order equations are reduced to first
order. The mathematical details of the model reduction
are provided in the Supplemental Material [22] and the
limitations of the applied approximations are discussed
later in this article.
The simplified oscillator scheme is depicted in Fig. 1(c).

The three masses of the TE, TM, and material oscillator are
now merged into one waveguide oscillator. Assuming a
time-harmonic oscillator displacement that is proportional
to expð−iωtÞ, the governing equations in the rotating wave
approximation are given by the matrix equation

ðM0 þ ΔM − IωÞx ¼ ηREjj; ð1Þ

where I is the 3 × 3 identity matrix, and η is a residue of the
rotating wave approximation that is inversely proportional
to the effective mass and the density of our oscillators [22].
The vector x ¼ ðxTM; xP; yTEÞT contains the displacements
of the corresponding oscillators in the xy plane, whileEjj ¼
ðEx; EyÞT denotes the driving electric field. The forces
acting on each oscillator are proportional to REjj, with the
charge density matrix

R ¼

0
B@

ρTM 0

ρP 0

0 ρTE

1
CA: ð2Þ

Furthermore, M0 accounts for the coupling of the TM
waveguide mode and plasmon [19], with

M0 ¼

0
B@

ωTM −κ 0

−κ ωP 0

0 0 ωTE

1
CA: ð3Þ

The corresponding coupling constant κ is assumed to be
purely real, while ωj ¼ Ωj − iΓj, (j ¼ TE, TM, P) are
complex frequencies that consist of the resonance frequen-
cies Ωj and the damping coefficients Γj (due to radiative
and absorptive losses) of the different modes. The anti-
symmetric matrix ΔM denotes the nonreciprocal influence
of the magnetic field via the Lorentz force proportional to
v × B and is defined as

ΔM ¼ βeiθ

0
B@

0 0 −i
0 0 0

þi 0 0

1
CA; ð4Þ

with the real coupling coefficient β that is proportional to
the static magnetic field. The factor exp iθ stems from the
four-oscillator model and represents the phase of the MO
oscillator in that system. In Secs. III and VI of Ref. [22] it is
shown by perturbation theory [23,24] that this phase
corresponds to the phase of the gyration g ¼ jgj expðiθÞ
of the MO material.
The optical response of the system is obtained by

assigning an effective susceptibility to the system. This
is done by summing up the effective electronic polarization
Pjj ¼ χEjj, which can be identified as Pjj ¼ RTx. Hence,
the effective susceptibility can be written as

χðωÞ ¼ ηRTMðωÞ−1R; ð5Þ
with MðωÞ ¼ M0 þ ΔM − Iω. Because of the cross prod-
uct in the Lorentz force, ΔM and thus MðωÞ become
antisymmetric for nonzero magnetic fields, reflecting the
nonreciprocity of the system [25,26].
The eigenfrequencies of the coupled oscillator system

are obtained by setting the external electric field in Eq. (1)
to zero. This results in the following eigenvalue problem:

ðM0 þ ΔMÞxn ¼ ωnxn; ð6Þ
where ωn denotes the eigenvalues, and xn the eigenvectors
for n ¼ 1, 2, 3. In our model, the Lorentz force is assumed
to be weak compared to the restoring forces. Hence, ΔM is
regarded as a small perturbation of M0, resulting in ωn
being close to the eigenfrequencies of M0. The eigenfre-
quencies of M0 are given by

ω1=2 ¼
ωTM þ ωP

2
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ

�
ωTM − ωP

2

�
2

s
; ð7Þ

ω3 ¼ ωTE: ð8Þ
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The first two eigenfrequencies correspond to the two
branches of a WPP hybrid mode arising from the coupling
between the plasmonic mode and the TM waveguide mode
[19,20]. The third eigenfrequency is simply the frequency
of the TE polarized waveguide mode. In earlier work, it was
demonstrated numerically [14,15] that the largest magneto-
optical response occurs for grating periods at which the
TE waveguide mode and one of the TM polarized WPP
branches possess similar resonance frequencies, i.e., when
ω1=2 ¼ ωTE. This behavior can now be deduced analyti-
cally from the presented model by examining the inverse of
M for a small perturbation ΔM:

M−1 ≈ ðM0 − IωÞ−1 − iβeiθ

ðω1 − ωÞðω2 − ωÞðωTE − ωÞ

×

0
B@

0 0 þðω − ωPÞ
0 0 −κ

−ðω − ωPÞ þκ 0

1
CA: ð9Þ

This expression reveals that the magnetic terms propor-
tional to β become largest for ω ¼ ωTE ¼ ω1=2, which
confirms previous numerical findings.
To obtain the effective susceptibility for a particular

nanostructure, the free parameters in M and R have to be
deduced by a systematic and rigorous fitting procedure. Our
fitting process consists of three steps, in which M0, R, and
ΔM are fitted sequentially. Full numerical simulations based
on the scattering matrix method [27,28] were used as
reference. In the following, the three fitting steps are
discussed and applied to a sample geometry that consists
of a 150 nm thick EuSe film with 70 nm thick and 70 nm
wide gold wires on top [see Fig. 1(a)]. The substrate under
the film is assumed to be glass. The applied magnetic field
was assumed to be 5 T. For the dielectric function of
gold, we used a Drude model with parameters given by
Ref. [1], whereas the other dielectric components were
assumed to have a constant dielectric function (see Sec. IV
in Ref. [22]).
In the first step, the free parameters inM0 are fitted such

that the eigenfrequencies of the mechanical system match
the eigenfrequencies of the actual nanostructure obtained
by rigorous numerical solutions of Maxwell’s equations.
While Eq. (8) allows the direct derivation of ωTE, the
complex coefficients ωTM, ωP, and the real coefficient κ in
Eq. (7) cannot be deduced directly from the full numerical
simulations. This can be resolved by calculating the real
part of ωTM from an empty lattice approximation [29] and
assuming ΓTM ≈ ΓTE=10, as justified by the results in
Refs. [19,20]. Figure 2 shows the comparison between
the simulated and fitted eigenmodes of the oscillator model
that includes the Lorentz force. The eigenmodes are plotted
as blue (TM) and green (TE) dashed lines in units of
wavelength. The solid black lines mark the edge of the light
cone (i.e., the Rayleigh anomaly). The blue solid lines
correspond to the frequencies of the individual oscillators.

Especially in the most relevant region around the inter-
section of the TE waveguide mode and WPP, the modal
dispersion is reproduced very well by the oscillator model.
Outside this region, in the simulated TM dispersion at
around 530 nm, there is a discontinuity due to the presence
of another spectrally close higher-order mode. As expected
[30], the eigenmodes of the actual nanostructure exhibit a
cutoff at the edge of the light cone. Since the model does
not take the periodic geometry into account, this disconti-
nuity is missing in the dispersion plot of the model.
In the second part of the fitting sequence, the coefficients

inR are derived by the condition that the transmittance of the
effective medium has to reproduce that of the actual sample.
In analogy to the first fitting step, it is assumed that the
magnetic field exhibits only a weak influence on the
absorption behavior. Hence, the absorption can be derived
from the effective susceptibility for zeroB field. This is done
by setting ΔM ¼ 0 and solving the Helmholtz equation to
obtain the evolution of an x- and y-polarized plane wave
over an effective propagation distance. This distance was
assumed to be the sample thickness of 220 nm. For the sake
of simplicity, the coefficients in R were assumed to be
constant for all grating periods. By comparing the simulated
transmittance in Fig. 2 (left panels) and the modeled trans-
mittance (right panels), it can be seen that, except for the
discontinuities outside the region of interest, as discussed
above, the line shapes agree very well.
In the third part of the fitting procedure, the remaining

magneto-optical coefficients in ΔM are determined. Far
away from the MO material resonance, the gyration

FIG. 2. Comparison between transmittance spectra and modal
dispersion derived from numerical simulations (left panels) and
the Lorentz force oscillator model (right panels). TM (TE)
polarized modes are plotted as blue (green) dashed lines. Blue
solid lines indicate the uncoupled plasmon and TM waveguide
frequencies.
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g ¼ jgj expðiθÞ can be assumed to be constant. For bismuth
iron garnet [14] and EuSe [15], this assumption is valid
for the red and near-IR spectral region,where θ ≈ −45°. This
is also the value used for the oscillator model and the
numerical simulations. Note that our model will work as
well for other materials exhibiting different θ (see Sec. VI in
Ref. [22]). The last remaining fitting parameter is β, which is
proportional to the magnetic field. For realistic magnetic
field strengths, its value only influences themagnitude of the
MO response but not its spectral line shape. Therefore, we
scale β such that the MO response of the modeled system
reaches the values of the full simulation.
Figure 3 depicts the comparison of the resulting Faraday

rotation spectra from the full numerical simulations and our
oscillator model. The green and blue dotted lines trace the
eigenmodes. As expected by examining Eq. (9), the MO
response is largest around the intersection point of the TM
polarized WPP and the TE waveguide mode. Furthermore,
the qualitative and quantitative agreement between model
and numerical simulation is excellent. The corresponding
dispersion of ellipticity can be found in Sec. V in Ref. [22].
To compare the exact line shapes of the MO spectra, Fig. 4
displays the corresponding slice cuts of the Faraday rotation
and ellipticity spectra. Ourmodel reproduces the line shapes
very well [31]. This includes the characteristic up-down
feature in the Faraday rotation for x polarization (indicated
by arrows), which successively exhibits larger spectral
separation for periods larger than that of the TE-WPP
intersection (green line). This was also observed in
Ref. [15]. The only difference is that the modeled MO
spectra do not reproduce the offset in the spectra from the

numerical simulation. This is a result of the approximations
required for the reduction of the four-oscillator model to
the two-oscillatormodel. There, the oscillator strength of the
MO material was assumed to be much smaller than the
oscillator strength of thewaveguidemodes and the plasmon.
As a result, only the resonant contributions to the MO
response are taken into account.
In summary, the dispersion of the MO response of hybrid

magnetoplasmonic waveguides can now be understood in the
picture of a simple oscillator model including the nonrecip-
rocal Lorentz force. In the case of weak influence of the
Lorentz force, analytical expressions for the optical response
were obtained, which confirm previous numerical findings.
Importantly, the spectral line shape of the MO response is
fully determined by the optical properties of the system for
zero magnetic field. Only the overall magnitude of the MO
response is determined by the applied magnetic field.
The theory in this article provides the understanding

required to further develop hybrid magnetoplasmonic sys-
tems in highly integrated optics, demanding actively con-
trolled optical modulation [32], magnetic field sensing
[33,34], refractive index sensing [35], and optical isolation

FIG. 3. Comparision of the Faraday rotation derived from
numerical simulations (left panels) and the Lorentz force oscil-
lator model (right panels). The eigenfrequencies corresponding to
the upper TM polarized waveguide plasmon polariton (WPP)
branch and the TE waveguide mode are drawn as dashed lines.

FIG. 4. Comparison of Faraday rotation and ellipticity derived
from numerical simulations (left panels) and the Lorentz force
oscillator model (right panels). The spectra correspond to slice
cuts from Fig. 3 at equidistant periods from 250 nm to 430 nm
with 30 nm spacing.
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[36–41]. It should also be mentioned that the presented
findings can notonly help to understandandoptimize existing
sample geometries, but can also be transferred to other
geometries, such as 2D plasmonic gratings. Furthermore,
by removing all plasmonic oscillators, the case of a purely
dielectric grating-waveguide combination can be realized.
In prospect of nonlinear magnetoplasmonics, the pre-

sented model could also be of fundamental relevance.
Although the described model is fully linear, a nonlinear
extension would be straightforward by adding higher order
coupling terms [42].
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