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Retardation-induced phase singularities in coupled plasmonic oscillators
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We show that two coupled, stacked plasmonic scatterers exhibit surprisingly complex excitation spectra
as soon as retardation plays a role in the coupling. At a certain stacking distance and a certain frequency,
the amplitude and phase exhibit sharp features, and the phase difference between the scatterers shows a
singularity, which constitutes a vortex. Above this singularity, the antisymmetric oscillation that arises from
plasmon hybridization ceases to exist and is replaced by a second, symmetric oscillation. We examine the
distance-dependent behavior of these phenomena by an analytical coupled-dipole model as well as by numerical
simulations of stacked split-ring resonators and show that the singularity can be explained as an antiresonance.
Furthermore, we present a simple necessary and sufficient condition under which the oscillations have a phase
difference of exactly zero or π in case of arbitrary retardation and therefore exhibit the intrinsic symmetry of
the system. We show that this condition implies that the spectral positions of (anti)symmetric oscillations do
not coincide with the spectral positions of the (anti)symmetric mode. The vortices that are present at the phase
singularities might be used to generate light with angular optical momentum in plasmonic metasurfaces.
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I. INTRODUCTION

In recent years, vertically stacked plasmonic nanostructures
have gained much attention since they allow for truly three-
dimensional metamaterials [1–8], plasmonic rulers [9,10],
and nanoantennas [11]. Due to the coupling of the single
constituents, the spectra of these nanostructures show complex
features, such as multiple peaks or Fano resonances [12–17].
In many cases, the behavior has been successfully described by
the plasmon hybridization model, introduced by Nordlander
et al. [18]. As long as the coupling is near-field mediated,
the finite value of the speed of light can be neglected and
the interaction can be seen as instantaneous. For chains or
arrays of nanoparticles, however, retardation is needed to
describe the behavior of these extended structures [19,20].
Only recently, the effects of retardation in single-particle
coupling have moved into the focus of scientific research
[21–23]. For linear processes, retardation can be formulated
as a complex frequency-dependent coupling constant, derived
from the dyadic Green’s tensor that connects the polarization
of one nanoparticle to the field at the position of the other
nanoparticle [24]. Retardation can produce effects similar to
electromagnetically induced absorption [25,26] or create sharp
resonances [27].

In order to use this additional degree of freedom, we
have to understand the implications of a complex coupling
constant on the excitation spectrum. Therefore, we study the
most fundamental realization of a retardedly coupled system,
i.e., two coupled dipoles (see Fig. 1). In case of near-field
coupling, we expect a symmetric and an antisymmetric
oscillation at two different resonance frequencies due to
plasmon hybridization [18,28], while in the limit of large
distances coupling should be negligible and the two scatterers
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should behave like two uncoupled oscillators. In between
these two regions, the mutual coupling and the coupling
to the external field are of similar strength. The coherent
superposition of these two coupling effects leads to exciting
phenomena, such as vortexlike phase singularities and the
transformation of an antisymmetric to a symmetric oscillation
[Fig. 1(b)], which we will discuss in this paper. These
singularities appear when the external excitation and the near
field of one oscillator perfectly annihilate at the position of
the other oscillator due to destructive interference. Around
such so-called antiresonances one finds a strong frequency
dependence of oscillator amplitude and phase.

Our model system has strong similarities with the one
studied by Fischer and Martin [21], which showed periodic
intensity fluctuations of the plasmon resonance when the
nanoparticle distance is varied. In our paper, however, we focus
on the phase of two retardedly coupled nanostructures which
shows a very complex behavior down to stacking distances of
less than 1/10 of a wavelength.

II. ANALYTICAL MODEL

An intuitive way to describe plasmonic resonances is
a driven harmonic oscillator. If we describe the charge
distribution in the nanostructure by its electric dipole moment
p, which is driven by an external electric field Eext, and also
include radiation damping [29], this leads to

p = αEext (1)

with the polarizability

α = A

ω2
0 − iγ ω − ω2 − 2iAω3/(3c3)

. (2)

A denotes the strength of the plasmonic resonance, ω0

denotes its (angular) resonance frequency, and γ includes
all nonradiative losses. We would like to point out that the
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FIG. 1. (Color online) Closely stacked dipolar plasmonic oscil-
lators show two resonances with a phase difference of zero and π

[(a) and (c)]. By increasing the stacking distance d [(b) and (d)],
retardation is introduced which substantially changes the phase of
the coupling as well as of the exciting electric field. This can lead to
the transformation of the antisymmetric oscillation into a symmetric
oscillation (d).

resulting radiatively damped harmonic oscillator spectrum has
strong similarities, but is not equal to a Lorentzian spectrum.

In the case of two coupled plasmonic oscillators p1 and
p2, both are excited not only by the external electric field but
also by the electric field of the other oscillator, which can be
calculated via the dyadic Green’s function Gij :

pi = αi

(
Eext

i + Gij pj

)
, (3)

where αi denotes the polarizability of the respective dipole.
For simplification, we assume the scatterers to be similar, i.e.,

that they react equally to the exciting field: α1 = α2
def= α. We

also let the interaction be symmetric, i.e., Gij = Gji
def= G. For

plasmonic resonances, the orientation of the dipole moment
is often given by the shape of the particle. Therefore, we
can describe the polarization by a single complex scalar pi ,
and we do not need to care about its orientation. This also
makes Gij scalar. For more complex plasmonic resonances,
a whole coupling tensor [30] might be needed. However,
for many common shapes, the approximation of the plasmon
resonance by a dipole is very good and quite common, which
is why we stick to the dipole picture. At the end of this
publication, we demonstrate numerical simulations of more
complex nanostructures, namely, split-ring resonators, and find
that the discussed effects are also present. Using Eq. (3), it is
easy to show that the polarizations are given by(

p1

p2

)
= α

1 − (αG)2

(
1 αG

αG 1

)(
Eext

1

Eext
2

)
. (4)

From the matrix elements in Eq. (4) we can deduce that |αG|
is a measure for the energy transfer between the structures.
For |αG| < 1, each oscillator is mainly excited by the external
field at its own position, and the coupling to the other dipole
can be regarded as a perturbation. In this regime, we can
understand the prefactor 1

1−(αG)2 as the result of the Born series

1 + (αG)2 + (αG)4 + · · · which takes care of all scattering
processes. For |αG| > 1, however, the external field at the
position of the other dipole gives the largest contribution to
the polarization. In this case, the Born series above no longer
converges and we have reached the region of “strong energy
exchange,” in which the mutual interaction cannot be described
as a perturbation. For the exact value αG = ±1, Eq. (4) is not
well defined since the denominator becomes zero. However,

since polarizations need to be finite for finite distances between
the nanostructure and finite external excitation, the limit of p1,2

for αG → ±1 will exist for all physical situations.
If one diagonalizes the polarizability matrix in Eq. (4) that

relates the polarizations to the external fields, the modes of the
system can be recovered. For symmetry reasons [18], there
exists a symmetric and an antisymmetric mode regardless of
the coupling distance. The symmetric (antisymmetric) mode
will be the only excited mode if Eext

1 = Eext
2 (if Eext

1 = −Eext
2 ).

It is important to differentiate between modes and oscillations:
Modes are properties of the coupled system, independent
of the excitation, which show the aforementioned symmetry
properties in their phase. What is, however, visible in an
experiment will be the actual dynamics of the two driven
oscillators, which will generally be a coherent superposition of
the two modes, with an amplitude and relative phase depending
on the external field. This coherent superposition will lead to
the complex phase behavior seen in our simulations. With
Eqs. (2) and (4) the polarizabilities of the two hybridized
symmetric and antisymmetric modes are given by

αs
a
= A

ω2
0 − iγ ω − ω2 − 2iAω3/(3c3) ∓ AG

, (5)

which shows that AG determines the frequency shift as well
as spectral broadening (bright mode) or narrowing (dark
mode). This quantity, and not αG, is usually referred to as
the “coupling strength.” However, as we will show now, it is
αG that determines the phase between two coupled plasmonic
oscillators.

Therefore we investigate the behavior of two vertically
stacked dipoles that are excited with plane waves along their
stacking direction z (see Fig. 1). The Green’s function is then
given by

G = exp(ikz)

z3
[(kz)2 + ikz − 1] (6)

and the external plane-wave excitation is E · ( 1
eikz). To calculate

α, we used the values given in Table I. First, we examine the
phase difference of the oscillators to the external field (see
Fig. 2), given as φ1,2 = arg( p1,2

Eext
1,2

). In case of the oscillator being

excited first [Fig. 2(a)], the phase lag increases smoothly from
zero at low frequencies to π at high frequencies and does
not show strong qualitative differences at different stacking
distances. In Fig. 2(b), we explicitly plot the phase of p1 for
stacking distances of 100 nm (red, solid line) and 150 nm (blue,
dashed line). For the 100-nm case, we observe a zero crossing
slightly above 150 THz, which, however, only seems like a
strong feature due to our choice [31] to plot the phase between
−2π and zero. More importantly, we find a two-step behavior
of the phase, which is not present at a stacking distance
of 150 nm.

However, the phase of the oscillator excited second shows
a qualitatively different behavior for stacking distances below

TABLE I. Values used to model the polarizability α.

ω0 2π × 200 THz
γ 125 THz
A 400 000 nm3 × ω2

0
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FIG. 2. (Color online) Phase between the oscillating dipole and
external field, depending on the stacking distance. (a,b) Oscillator
excited first. (c,d) Oscillator excited second. In case (a) the phase
lag goes from zero to π without any strong phase changes for any
coupling distance. In (b) we show the phase of the first oscillator at
two distinct stacking distances, 100 nm (red, solid line) and 150 nm
(blue, dashed line). The phase has negative values, since the oscillator
is lagging behind the external excitation. The apparent “jump” of the
red curve slightly above 150 THz is only a zero crossing of the phase.
We discover a “two-step” behavior for the 100-nm case. For the
second dipole (c,d) the situations differ strongly for between stacking
distances below and above 120 nm. Below 120 nm, the phase lag
takes every possible value from zero up to 2π at the low-frequency
branch until it finally goes to π at high frequencies, while at higher
distances the phase lag only changes to a value below π , then goes
back to zero, until it goes up to π . We see this behavior also in (d),
where again the phase at 100 nm (red, solid line) and 150 nm (blue,
dashed line) is shown. The transition point exhibits a singularity in
the phase, marked by the black circle.

and above 120 nm. At 120 nm, the phase exhibits a vortexlike
singularity at about 180 THz [see Fig. 2(c)]. Below this vortex,
the phase starts at zero at low frequencies as well, but then
reaches every possible value until it reaches zero again and
finally becomes π at high frequencies. For stacking distances
above the vortex, this complex behavior is replaced by a phase
that changes from zero to a value smaller than π , then decreases
back to zero and finally reaches π . In Fig. 2(d) we plot the phase
for the explicit stacking distances of 100 nm (red, solid line)
and 150 nm (blue, dashed line), where we can also observe the
qualitatively different behavior below and above the vortex.

At the singularity, the phase is not well defined, which
implies that the polarization has to be zero at this point. Using
Eq. (4) and setting p2 = 0, we can deduce that this singularity
appears for

αG = − exp(ikz). (7)

In this case, the external excitation and the scattered field from
the first dipole exactly cancel at the location of the second
dipole and we are at the border between strong (|αG| > 1) and
weak energy transfer (|αG| < 1). To gain a better understand-
ing of the behavior around this special point, we calculate the
amplitudes |p1| and |p2| of the two oscillations at stacking
distances of 100 nm (below the vortex), 130 nm (slightly
above the vortex), and 150 nm (highly above the vortex). We

FIG. 3. (Color online) Absolute values of polarizations p1

(green, dashed) and p2 (blue, dotted) and their phase difference
(red, solid, labels at right axis) at different stacking distances: (a)
100 nm, (b) 130 nm, and (c) 150 nm. For 100 nm, the two modes are
clearly separated. The first oscillator has a spectrum consisting of two
overlapping Lorentzian peaks, where the phase difference at the first
peak is π (antisymmetric mode), while it is zero at the second peak
(symmetric mode). The second oscillator has a more complex line
shape. The two modes are marked by the dashed lines. For 130 nm,
which is just above the phase singularity, the phase difference does
not reach π anymore; instead, it crosses the zero line twice. While
|p1| still has the shape of two Lorentzians, |p2| shows a sharp dip.
For 150 nm, the phase shows only a slight modulation around the
resonance, reaching neither zero nor π . While the two resonances
are barely distinguishable in |p1|, the sharp dip in |p2| is still visible,
leading to two distinct peaks.

also analyze the phase difference between the two oscillators,
defined as �φ = arg(p1

p2
). The results are depicted in Fig. 3.

At 100 nm distance, |p1| shows two clear peaks, at which
the phase difference is either π (antisymmetric mode) or zero
(symmetric mode), demonstrating the validity of the plasmon
hybridization picture. The behavior of |p2| is more complex,
with asymmetric features especially at the antisymmetric
mode. We see that although plasmon hybridization gives two
modes with a damped harmonic oscillator line shape each,
the behavior of the second oscillator cannot be described by
a simple double-peak spectrum. This is of course due to the
fact that we always excite a coherent superposition of the two
modes, but it can also be understood as the second dipole “lying
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in the shadow” of the first one, which intuitively explains why
the spectrum of |p1| closely resembles a double-Lorentzian
spectrum, while p2 does not.

At 130 nm distance [Fig. 3(b)], the phase difference does
not reach π , but crosses the zero line twice. This is remarkable
because it seems to contradict plasmon hybridization. Due to
symmetry reasons, however, the two eigenmodes of the system
are always symmetric and antisymmetric. Nevertheless, in this
configuration there exists no frequency at which a perfectly
antisymmetric oscillation is excited. The appearance of the
second zero crossing will be explained below where we derive
a condition for perfectly (anti)symmetric oscillations. The
amplitude |p1| still shows two overlapping peaks, while |p2|
shows a strong dip. This dip reaches zero at the vortex and
the frequency dependence of |p2| becomes nondifferentiable.
However, qualitatively the frequency dependence of |p1,2| does
not differ much between the plotted case of 130-nm distance
and the exact distance at which the vortex occurs.

Finally, at d = 150 nm distance, the phase difference
reaches neither zero nor π . In |p1| the two modes are barely
distinguishable while in |p2| the strong dip is still visible [see
Fig. 2(c)]. We can therefore distinguish three regimes: For
strong interaction in the near field, there exists a symmetric as
well as an antisymmetric oscillation. For weaker coupling and
larger retardation, the antisymmetric oscillation ceases to exist
and gives rise to a second, symmetric oscillation. Eventually,
both of these symmetric oscillations disappear above a certain
distance.

All this behavior is typical for the appearance of an an-
tiresonance [32–34] of the second oscillator: Antiresonances
appear when two different drivings of an oscillator interfere
destructively in a way that the oscillator is not excited at all. In
our case, these two drivings are the external field and the field
scattered by the first oscillator. At an antiresonance, strong
phase jumps occur such as the vortex seen in our system, and
the two drivings “exchange roles.” This role change is due to
the fact that while the external driving maintains its intensity
for different stacking distances the field from the first oscillator
is strongly distance dependent. Although this happens at
distances well below the wavelength, retardation is still crucial
for the vortex to appear, since the symmetry in the driving of
the two oscillators needs to be broken. In our case, this happens
due to the different driving phase. Without retardation, both
oscillators would always oscillate in phase and no vortex would
be present. If the symmetry, however, is already broken, e.g.,
by coupling to different plasmonic scatterers, retardation is
not required for antiresonances to appear. This is, for example,
the case in planar dolmen structures [12] and other planar
structures with Fano resonances [35].

III. CONDITIONS FOR (ANTI)SYMMETRIC
OSCILLATIONS

If the two oscillators oscillate (anti)symmetrically, their
phase difference �φ = arg(p1

p2
) is an even (odd) multiple of

π . For nonvanishing p1,2, in the symmetric as well as in the
antisymmetric case, this is fulfilled if and only if

Im

(
p1

p2

)
= 0. (8)

We do not restrict ourselves to any angle of incidence for
the external plane-wave excitation, and are therefore allowed
to set the exciting field component to(

Eext
1

Eext
2

)
=

(
1

eiφ

)
. (9)

Please note that due to our approximation mentioned in the
beginning, namely, that the plasmonic resonance of each
particle is only excited by one electric-field component—
specifically the one pointing along its dipole moment—this
ansatz is valid for both s- and p-polarized excitation. The only
requirement which Eq. (9) states is that this component of the
external excitation is of the same amplitude at the location of
both nanostructures. Using Eqs. (4) and (8), we get

Im

(
p1

p2

)
= Im

(
1 + αGeiφ

αG + eiφ

)

= 1

|αG + eiφ|2 (|αG|2 − 1) sin φ

Eq.(8)= 0. (10)

This can only be fulfilled if either sin φ = 0, which means that
we obey the Bragg condition and only excite one of the two
modes, or

|αG| = 1. (11)

While the Bragg condition is fulfilled only for certain angles
of incidence, Eq. (11) is independent of the angle of incidence
and only depends on internal parameters such as the stacking
distance and the polarizability. Therefore we can state that
if and only if |αG| = 1 the system will oscillate either
symmetrically or antisymmetrically for arbitrary plane-wave
excitation. This statement is not in conflict with the root
appearing in the denominator of Eq. (4) for αG = ±1: First of
all, these roots appear only for exactly these two values, while
the condition |αG| = 1 is much more general. Second, for the

80

90

100

110

120

130

140

150

100 150 200 250 300

D
is

ta
nc

e 
(n

m
)

Frequency (THz)

0

π/2

π

3π/2

2π

P
ha

se
 d

iff
er

en
ce

FIG. 4. (Color online) Phase difference between oscillators.
Again we notice the phase singularity at 120 nm and 180 THz. The
black dashed line marks the values with |αG| = 1. Below the line,
the energy transfer is strong, i.e., |αG| > 1. At exactly |αG| = 1, the
phase difference is either zero or π . At the phase singularity, the π

phase disappears and gets replaced by a second symmetric oscillation.
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system to be physical, the limit αG → ±1 of all quantities
must exist. This is one of the main results of this paper. It
also shows that the frequencies of (anti)symmetric oscillations
do not have to coincide with the spectral position of the pure
(anti)symmetric modes; in fact, except for special cases like
Bragg scattering, they differ.

Figure 4 shows the phase difference for different stacking
heights and frequencies. The dashed line marks the points at
which Eq. (11) is fulfilled. As shown, these points coincide
with (anti)symmetric oscillations. Above the vortex, this
condition is still met at two points in frequency space; however,
then the overlap between the two modes is large enough that
the symmetric oscillation can impose its behavior on both
frequencies, which leads to two symmetric oscillations.

IV. NUMERICAL SIMULATIONS

To demonstrate that this complex behavior is not spe-
cific to single dipoles but also appears at more complex
plasmonic scatterers, we simulated two stacked split-ring
resonators (SRRs), a so-called stereometamaterial [36], using
the commercially available finite element method solver CST
Microwave Studio. SRRs couple through their electric as well
as magnetic dipole moment [36–38] where the respective
coupling strengths can be tuned by rotating one of the SRRs
around the central axis [36]. The dimensions of the simulated
SRRs can be found in Fig. 5(a). Gold was modeled using data
from Johnson and Christy [39]. The structures are placed in
vacuum. We analyzed the phase of the plasmonic resonance
by reading out the electric field at a point in the gap which is
centered in the SRR in the x and z direction and displaced 70
nm from the center in the y direction and by subtracting the
field from the external plane-wave excitation.

As shown in Fig. 5(b), the phase singularity appears at
s = 95 nm and ν = 198 THz, however not as pronounced as
in the point dipole case. Therefore, we infer that it is a
common feature of coupled plasmonic systems and that the
exact expression for G is not important. We would like to
note that 95 nm is well within the range of experimental feasi-
bility [2] and that one has to be very careful in describing the
observed phenomena in terms of symmetric and antisymmetric
oscillations, since one can easily reach stacking distances in
which no antisymmetric oscillation occurs.
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FIG. 5. (Color online) (a) Dimensions of the coupled SRRs used
in the simulation: l = h = 230 nm, w = 90 nm, and t = 50 nm. s is
varied in the simulation. (b) Phase difference between the oscillations
of the upper and lower SRR. We see the appearance of the phase
vortex at s = 95 nm and ν = 198 THz (black circle), however not as
pronounced as in the point dipole case.
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FIG. 6. (Color online) (a) The interaction can be enhanced by
twisting one of the SRRs by 180 deg. (b) Phase difference between
the oscillations of the upper and lower SRR. We see the appearance
of the phase vortex at s = 165 nm and ν = 210 THz. The effect is
much more pronounced than in the nontwisted case.

We can enhance the effect by twisting the upper SRR by
180 deg around the central axis [Fig. 6(a)]. This retains the
required symmetry, i.e., equal interaction with the external
excitation, but causes electric and magnetic dipole coupling
to add up constructively. Figure 6(b) demonstrates that the
vortex is much more pronounced and the disappearance of the
antisymmetric oscillation (blue) is clearly visible.

V. CONCLUSION

We have shown that plasmonic scatterers behave qualita-
tively differently at different stacking distances. In particular,
a phase singularity appears at a certain frequency, which can
be interpreted as an antiresonance. As any singularity yields a
very sharp feature by definition, this might be useful for future
sensing devices that directly probe the phase of one of the scat-
terers. Also, the strong frequency dependence of the amplitude
of the second oscillator around the antiresonance could be
used for local frequency-sensitive measurements, in analogy
to current applications of Fano resonances [40]. By giving a
simple necessary and sufficient condition for (anti)symmetric
oscillations, we were able to explain the appearance of a second
symmetric oscillation above the phase singularity. Since this
condition holds for arbitrary angles of incidence, it follows
that as soon as the oscillation is (anti)symmetric for one angle
of incidence (that does not fulfill the Bragg condition) it is
(anti)symmetric for any angle of incidence.

Coupled harmonic oscillators have been one of the most
fundamental building blocks of physical theories for centuries,
since their behavior is easy to understand. Therefore in
our opinion the richness of features that occur as soon as
retardation is introduced is remarkable and makes retardation
one of the most interesting degrees of freedom for tuning the
response of coupled plasmonic oscillators. In the future, the
vortices that are present at the phase singularities might be used
to generate light with optical angular momentum in plasmonic
metasurfaces when combining the coupled plasmonic systems
with appropriate lateral and spatial design.
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