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ABSTRACT: We derive a closed-form expression that accurately predicts the peak frequency shift
and broadening induced by tiny perturbations of plasmonic nanoresonators without critically relying
on repeated electrodynamic simulations of the spectral response of nanoresonator for various
locations, sizes, or shapes of the perturbing objects. In comparison with other approaches of the same
kind, the force of the present approach is that the derivation is supported by a mathematical formalism
based on a rigorous normalization of the resonance modes of nanoresonators consisting of lossy and
dispersive materials. Accordingly, accurate predictions are obtained for a large range of nanoparticle
shapes and sizes used in various plasmonic nanosensors even beyond the quasistatic limit. The
expression gives quantitative insight and, combined with an open-source code, provides accurate and
fast predictions that are ideally suited for preliminary designs or for interpretation of experimental data.
It is also valid for photonic resonators with large mode volumes.
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In recent years, metallic nanoparticles have gained a lot of
attention and also witnessed successful applications in

various fields of nanosciences. As their near-fields support
strong and highly confined resonances, metallic nanoparticles
can effectively convert local changes of refractive index into
frequency shifts of the resonance.1,2 This property has driven
considerable development in sensing technologies based on
localized surface plasmon resonance (LSPR) of metallic
nanoparticles,2,3 benefiting from significant advances in the
detection of single metallic nanoparticles.4,5 Thanks to their
small mode volume, LSPRs are suitable for achieving detection
of ultrasmall refractive-index changes.2,6−8 Even single-molecule
sensitivity has been recently achieved.9,10

In this work, we derive an analytical formula that predicts the
change Δω̃ of the complex-valued eigenfrequency ω̃ of the
LSPR, induced by a local near-field perturbation of resonant
metallic nanoparticles. The derivation is motivated by the fact
that the frequency shift Re(Δω̃) and the resonance broadening
−2/m(Δω̃) are two quantities of fundamental importance for
sensing applications.2,3,7 Yet another motivation is that the
theoretical prediction of Δω̃ usually relies on tedious and
repeated fully vectorial electromagnetic calculations for various
parameters, such as the location, size, shape, or refractive index
of the perturbation and that a simple and intuitive approach
that is accurate for arbitrary nanoparticle sizes and shapes may
help early designs or interpretation of experimental results and
is essentially absent in the literature. Finally another motivation
is that the derivation of an analytical formula accurate for
photonic or plasmonic nanoresonators of arbitrary size and
shape, potentially composed of lossy and dispersive materials, is
of fundamental interest and has not been already established.

All these issues are addressed thanks to the introduction of the
true resonance modes of lossy and dispersive resonant
nanostructures and to the use of a rigorous normalization.11

In passing, we remark that the present formula is also valid for
photonic resonators and importantly for the practical case of
nanoparticles that are placed on a substrate.
One of the major difficulties to derive such an analytical

formula is the establishment of a “mode volume” (or mode
normalization) for nanoresonators with strong energy dis-
sipation resulting from either radiation leakage or absorption.
The classical mode volume, which is defined with the
electromagnetic energy stored in the cavity,12,13 is accurate
only for high-Q dielectric cavities. The theoretical difficulty
associated with dielectric cavities with strong leakage has been
noted dating back to the early studies of optical micro-
cavities12−15 and has reemerged in the context of plasmonic
nanoresonators,16,17 in which absorption and dispersion
additionally play an important role. Recently, a solid theoretical
framework for the computation and normalization of the
modes of lossy resonators has been established11,18 by
transforming the resonance modes, which are morally scattering
states, into square-integrable modes by using complex
coordinate transforms.
The report is organized as follows. The closed-form

expression for the frequency shift and resonance broadening
is first derived. Then we explain how the resonance mode can
be computed and normalized properly, for instance, with the
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open-source code in ref 19. We further outline the fundamental
difference between the present work and previous theoretical
works of the same kind.20−22 A thorough discussion is provided
in the Supporting Information. Finally, we test the closed-form-
expression accuracy for plasmonic nanoresonators of different
sizes and shapes for perturbations with different shapes,
refractive indices, and positions with respect to the nano-
resonators and evidence that the formula is highly accurate for a
broad panel of plasmonic sensors.
Master Equation. The closed-form expression for Δω̃ is

simple. If we denote by Ẽ(r) the resonance mode (called as
quasi-normal mode or QNM, hereafter) of the bare metallic
nanoparticle and by Ẽapp(r) ≈ Ẽ(r) a slightly modified version
of Ẽ(r) that takes into account local field corrections, the
complex-frequency shift Δω̃ due to a local permittivity change
Δε(r,ω̃), which may be a tensor for anisotropic media, reads as

∭ εω ω ωΔ ̃ = − ̃ Δ ̃ ̃ · ̃r E r E r r( , ) ( ) ( )d
V

app
3

p (1)

where the integral runs over the perturbation volume Vp. It will
be shown that eq 1 provides accurate predictions for various
shapes, sizes, and material properties of the metallic nano-
resonator. The main force of eq 1 resides in the fact that once
the QNM is calculated the shift is known analytically for any
shape, size, position, or permittivity of the perturbation.
Throughout the manuscript, the notation tilde is used to
refer to QNMs.
At first glance, eq 1 resembles expressions obtained and

successfully used in earlier works on resonance shifts for very
high-Q dielectric resonators, such as microwave cavities,23

microspheres,24 or photonic crystal cavities,25 and one may
question the novelty of the work.
The main difference resides in the integrand used, a Ẽ·Ẽ

product instead of a Ẽ·Ẽ* product and, of course, in the mode
normalization. Replacing Ẽ·Ẽ* by Ẽ·Ẽ is not just a small
modification but has profound implications:
• First, on a mathematical perspective, a resonance mode

that leaks cannot be normalized with an Ẽ·Ẽ* product since
Ẽ(r) exponentially diverges as |r| → ∞.11 Consistently,
normalizations with Ẽ·Ẽ* products are performed by
considering arbitrarily finite integration domains in general
with a real frequency.23−25

• Second, for high-Q photonic resonators, the normalized
resonance mode Ẽ(r) is nearly real, Im(Ẽ)/Re(Ẽ) = O(1/Q)26

and normalizations with either Ẽ·Ẽ or Ẽ·Ẽ* on a finite
integration domain are largely equivalent when estimating the
frequency shift Re(Δω̃). However, Ẽ·Ẽ and Ẽ·Ẽ* products
provide distinctive predictions for Im(Δω̃). For instance, for a
dielectric perturbation (Δε real), the peak broadening −2Im-
(Δω̃) with Ẽ·Ẽ* is always proportional to Im(Δω̃) with a
proportionality factor that is real (as can be immediately seen
by replacing Ẽapp by Ẽ* in eq 1), regardless of the mode profile

and the perturbation positions. This makes no sense, and
consistently, peak-broadening predictions with analytical
formulas are essentially absent in the literature on high-Q
dielectric cavities to our knowledge. This difficulty is removed
by the formula using Ẽ·Ẽ products. As will be shown in the
following, peak broadenings are accurately predicted by eq 1 for
low-Q plasmonic resonators. Further work should be under-
taken to evaluate the accuracy of eq 1 for predicting the peak
broadening of high-Q photonic resonators, but this evaluation
remains out of the scope of the present contribution that
focuses on plasmonic nanoresonators.
• Third, the phase of the resonant mode, which is ignored by

Ẽ·Ẽ* products matters in eq 1. For tiny perturbations, the
phase variation over the spatial extent of the perturbation (i.e.,
phase-retardation effect) can be neglected, but for larger
perturbations covering the entire surface of the resonator (see
Figure 1c), phase-retardation effect cannot be neglected and
should be incorporated in the integral over the perturbation
volume. Phase-retardation effects are strikingly important for
predicting light backscattering in optical waveguides in the
presence of small fabrication imperfections for instance.27

• Fourth, metallic resonators present particular challenges.
Because the Q-factor is typically in the range between 10 and
100, Im(Ẽ) cannot be neglected, and normalizations with either
Ẽ·Ẽ or Ẽ·Ẽ* provide distinct predictions for both Re(Δω̃) and
Im(Δω̃). Additionally, because the field around the nano-
particle in free space diverges much faster than for dielectric
cavities, the normalization issue becomes critical.14,17 Beyond
the quasi-static limit, the field outside the nanoparticle matters
critically for normalization and we will see that eq 1 provides
accurate predictions for both Re(Δω̃) and Im(Δω̃).
• Finally, to further evidence the predictive force of the

present formula, in the Supporting Information we make a
thorough comparison of the present approach with a recent
representative theoretical work of the same kind22 in which the
relevant “mode” is calculated at the real-valued resonance
frequency and the normalization involves Ẽ·Ẽ* in the quasi-
static approximation. Consistently with ref 22, we find that the
quasi-static formula accurately predicts Re(Δω̃) for very small
(<λ/10) resonators. However, we find that the quasi-static
formula fails in predicting Im(Δω̃) for any resonator size and
rapidly becomes inaccurate for predicting Re(Δω̃) as the
resonator size is increased toward realistic values that are large
enough to give sufficient scattering in plasmonic sensing
technologies.6,9 In contrast, these severe limitations are not
encountered with our eq 1, evidencing the importance of our
universal and robust Ẽ·Ẽ treatment (including computation and
normalization) of low-Q resonators.

Derivation of the Master Equation. To derive eq 1, let us
start by considering two eigensolutions of source-free Maxwell’s
equations. The first solution corresponds to the resonance
mode of the bare metallic nanoparticle,∇ × Ẽ = −iω̃μ(ω̃)H̃

Figure 1. Schematic showing unperturbed and perturbed resonant metallic nanoparticles. (a) Bare metallic nanoparticle supporting a quasi-normal
mode (QNM) (Ẽ,H̃) at eigenfrequencyω̃. (b,c) Metallic nanoparticle perturbed by a small nanosphere or a thin shell, supporting a perturbed QNM
(Ẽ,H̃) at eigenfrequency ω̃′. The permittivities of the metal, background medium, and perturbation are denoted by εm, εb, and εp, respectively.
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and ∇ × H̃ = iω̃ε(ω̃)Ẽ, denoted as (Ẽ,H̃) with an
eigenfrequency ω̃, see Figure 1a. The second solution with
an eigenfrequency ω̃′, ∇ × Ẽ′ = −iω̃′μ(ω̃′)H̃′ and ∇ × H̃′ =
iω̃′(ε(r,ω̃′) + Δε(r,ω̃′))Ẽ′, represents the resonance mode
(Ẽ′,H̃′) of the nanoresonator dressed by the perturbation (i.e.,
the permittivity change) Δε(r,ω̃′), see Figure 1b,c. Applying
the Green−Ostrogradski formula to the vector Ẽ′ × H̃ − Ẽ,H̃′,
we obtain

∬
∭ ωε ω ω ε ω ε ω

ωμ ω ω μ ω

̃ ′ × ̃ − ̃ × ̃ ′ ·

= − ̃′· ̃ ̃ − ̃′ ̃′ + Δ ̃′ ̃′

− ̃ · ̃ ̃ − ̃′ ′ ̃′ ̃ ′

∑

Ω
i

E H E H S

E E

H H r

( ) d

{ [ ( ) ( ( ) ( ))]

[ ( ) ( )] }d3 (2)

where ∑ is an arbitrary closed surface defining a volume Ω. In
earlier work,11 it was shown that the volume integral in eq 2 can
be evaluated over the entire space, provided that the entire
space is decomposed into two subdomains Ω1 and Ω2 with Ω1

being a finite-volume real space that contains the metallic
nanoparticle and Ω2 being a surrounding space that can be
implemented with perfectly matched layers (PMLs), which
transform the exponentially diverging QNMs in real space into
square-integrable modes with an exponential decay in Ω2; see
details in ref 11. Because of the exponential decay, the surface
integral on the left-side of eq 2 becomes null and, assuming that
Δω̃ is small so that we may use a first order expansion of the
permittivity and permeability for ω ≈ ω̃, eq 2 becomes

∭

∭

ε

ω
ω

ω ω
ω

ω

Δ ̃
̃

= ̃′ − ̃
̃

=

−
Δ ̃ ̃′ · ̃

̃ · ̃ ′ − ̃ · ̃ ′ε μω ω
ω
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ωΩ

∂
∂
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E r E r H r H r r

( , ) ( ) ( )d

( ) ( ) ( ) ( ) d

V

r r

3

[ ( , )] [ ( , )] 3

p

(3)

where Δε(r,ω) = εp(r,ω) − εb(r,ω) with εp and εb the
permittivities of perturbation and background medium. It is
noteworthy that eq 3 is exact up to a first order in Δω̃.
To calculate the frequency shift Δω̃ using the sole

knowledge of the unperturbed mode Ẽ, we need to eliminate
the unknown perturbed QNM Ẽ′,Η̃′. In the denominator, a
very accurate assumption consists in considering that the
perturbation modifies the QNM field distribution only locally
in a volume approximately equal to Vp, and that the error
induced by replacing Ẽ′,Η̃′ by Ẽ,Η̃ into the denominator of eq
3 is negligible. Then using the QNM normalization

∭ μωε
ω

ω
ω

̃ · ∂
∂

̃ − ̃ · ∂
∂

̃ =
Ω

⎧⎨⎩
⎫⎬⎭E E H H r

[ ] [ ]
d 13

(see ref 11), we obtain

∭ω ω ε ωΔ ̃ = − ̃ Δ ̃ ̃ ′ · ̃r E r E r r( , ) ( ) ( )d
V

3

p (4)

To go further, we should estimate Ẽ′ from Ẽ. A crude
approximation would consist in simply making Ẽ′ ≡ Ẽ in eq 4.
However, we rather consider a better approximation, based on
local-field corrections, Ẽ′ ≡ Ẽapp as explained in the next section
and finally obtain the master equation 1.
We remark that the QNM normalization relies on an

analytical continuation in the complex space and can be
implemented with PMLs in the domain Ω2. However, a much
simpler and completely general method has been reported in
ref 18. The method, which can be easily implemented with
virtually all numerical Maxwell solvers, calculates normalized
QNMs in a few (4−5) iterations that require a few minutes
CPU-times. It is this method that we adopt hereafter for the
numerical examples, using an open-source COMSOL code.19

In the Supporting Information, we provide a thorough
evaluation of errors that occur when replacing Ẽ′ by Ẽapp or Ẽ in
eq 3. We find that the error made in the denominator is
completely negligible and that the dominant error that limits
the accuracy of the master equation results from the
replacement of Ẽ′ in the numerator. In this regard, the error
evaluation shows that much better accuracy is achieved with
local-field corrections.

Local Field Corrections. In the following, we will consider
the following two types of perturbations; a tiny nano-object
placed in the near field of the metallic nanoresonator, see
Figure 1b, and a thin shell surrounding a metallic nano-
resonator, see Figure 1c. The former is important for
nanoparticle detection, for instance,8,10,28−32 and the latter for
biosensing applications32−34 or gas sensing.35 For the former
case, we adopt the polarizability tensor α of the nano-object to
approximate Ẽ′ from Ẽ and assume that the perturbed QNM-
field Ẽ′(r) inside the nano-object (for r ∈ VP) is proportional
to the unperturbed QNM-field Ẽ′(r)36

αε
ε ω

̃ =
̃

Δ ̃V
E r

E r
r

( )
( )

[ ( , )]app
b

p (5a)

The polarizability tensor can be calculated for any particle.
For small spheres that will be tested numerically, it takes a
simple form α = 4πR3(εp − εb)/(εp + 2εb) For the shell case,
we again assume that the perturbed QNM-field E′(̃r) inside the

Figure 2. The electric field distribution Re(Ẽz) of the normalized fundamental QNMs supported by three gold nanoresonators: (a) a single nanorod,
(b) a nanorod dimer, and (c) a nanocone. The nanoresonators are placed in water (εb = 1.77) and their dimensions is given in the main text. The
associated eigenwavelengths, computed with the open-source COMSOL software in ref 19, are λ ̃ = 2πc/ω̃ = 691.52−30.94i, 756.44−47.12i, and
805.31−40.28i nm, respectively. In the simulation, a Drude model εm = 1 −ωp

2/ω2 − iωΓ is adopted for the relative permittivity of gold with ωp =
1.26 × 1016 s−1 and Γ = 1.41 × 1014 s−1.
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shell (for r ∈ Vp) is proportional to the unperturbed QNM-
field Ẽ(r) with a proportionality factor settled by the field
boundary conditions at the nanoresonator−shell interface

ε
ε

̃ ≈ ̃ ̃ ≈ ̃E r E r E r E r( ) ( ) and ( ) ( )app
(T) (T)

app
(N) b

p

(N)

(5b)

where the superscripts (T) and (N) refer to tangential and
normal field components. This modified first-order Born
approximation is known to be very accurate for small shell
thicknesses; see, for instance, a related theoretical study on slow
light propagation in photonic-crystal waveguides27 in the
presence of small fabrication imperfections.
Quantitative Numerical Tests of the Master Equation.

For the numerical tests, we consider three types of metallic
nanoresonators: a cylindrical gold nanorod (radius R = 15 nm
and length L = 90 nm), a dimer composed by two identical
cylindrical gold nanorods (R = 15 nm and L = 90 nm, gap size
15 nm) and a gold nanocone (L = 100 nm and R = 27.5 nm at
bottom).The apexes of the nanorods and the nanocone are
rounded (the nanorod apexes are hemispheres with the same
radius as the cylinder and the nanocone apex is rounded with a
radius of curvature R = 7.5 nm).The nanoresonators are
assumed to be surrounded by water (εb = 1.77). The z-
component of the electric field of the fundamental QNMs are
shown in Figure 2. Hot spots in water show up with a blue
color.
To test the accuracy of eq 1, we compare the resonance shift

Δω̃ predicted with eq 1 to the exact shift value Δω̃exact
computed as the difference of the eigenwavelengths of the

perturbed and the unperturbed QNMs, both obtained with the
open-source COMSOL code19 with two independent compu-
tations. The fully vectorial approach adopted here to obtain
Δω̃exact is equivalent to the usual approach (more details can be
found in the discussion about the last example), which consists
in comparing the spectral responses (e.g., spectra of the
absorption or extinction) of a perturbed resonator and an
unperturbed resonator, but it is more efficient from numerical
perspectives and is also more accurate for estimating small
changes of the resonance width.
Figure 3a shows the wavelength shifts induced by the

presence of a protein nanosphere (εp = 2.25) located in the hot
spots of the three metallic nanoresonators at a 0.5 nm
separation distance from the metal surface. These situations are
encountered in single-molecule sensing experiments, where the
analyte can be chemically adsorbed to the nanoresonator
surface with an analyte−metal spacing of ∼1 nm.9,10 The best
sensitivity is obtained for the nanocone (brown-thick curve).
This is straightforwardly deduced from the hot-spot intensities
in Figure 2, because the brighter spot is achieved at the
nanocone apex. This underlines the importance of a proper
disposal of QNM normalization. The dimer performance is
tested for two nanosphere locations in the gap, either 0.5 nm
below the upper arm (black curve) or exactly at the gap center
(red curve). On the whole, the dimer performance is better
than that of its constituting element, the single nanorod (blue
curve); remarkably, it becomes as sensitive as the nanocone.
This is again easily understood from Figure 2; close to the
nanocone apex, the QNM near-field is the strongest one, but it

Figure 3. Resonance shifts of plasmonic nanostructures due to a perturbing nanosphere in aqueous environment (εb = 1.77). (a) Re(Δλ ̃)/Re(λ ̃) as a
function of the nanosphere (protein, εp = 2.25) radius for various nanoresonators. The sphere is placed 0.5 nm above the apex of the nanorod (blue
dashed) or nanocone (brown thick). For the dimer, the nanosphere resides in the gap at 0.5 nm below the upper arm (black dotted-dash) or at the
gap center (red thin). (b) Re(Δλ ̃) and 2·Im(Δλ ̃) as a function of the separation distance S between the nanorod and the perturbing nanosphere of
radius R = 3 nm for nanospheres made of gold (black curves) and silicon (red curves, εp = 12.25). In panels a and b, circle or square marks are
obtained with fully vectorial calculation and curves are predicted with eq 1

Figure 4. Resonance shift induced by the formation of a thin dielectric shell around a plasmonic nanorod in aqueous environment (εb = 1.77). (a)
Re(Δλ ̃) (red) and 2·Im(Δλ ̃) (blue) as a function of the shell thickness. Fully vectorial calculations and analytical predictions are represented by
circles and solid curves. (b) Calculated scattering cross-section σsca as a function of the wavelength for a bare nanorod (blue) and the same nanorod
covered by a 5 nm shell (red). In panels a and b, the shell permittivity is εp = 2.25 and the rod radius and length are R = 10 nm and L = 80 nm.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.5b00771
Nano Lett. 2015, 15, 3439−3444

3442

http://dx.doi.org/10.1021/acs.nanolett.5b00771


also the most confined so that a balance is achieved for
relatively large nanospheres. In general, the agreement between
the analytical predictions obtained with eq 1 and the fully
vectorial calculations is excellent in Figure 3a. We have
performed additional tests for nanorods with different
dimensions (not shown) and similar agreement was achieved;
we found that as the size of the nanorod apex increases, the
sensitivity decreases.
Figure 3b reports additional tests performed for perturbing

nanospheres of high permittivity |εp|, such as those used for the
sensing applications in which target analytes are labeled by
high-permittivity nanoparticles.28,30 Two spherical nanopar-
ticles with radius R = 3 nm are considered; one is made of gold
(εp(ω̃) = −20.45 + 0.81i at resonance) and the other one of
silicon (εp= 12.25). The shifts are calculated as a function of the
separation distance to the nanorod apex, see inset. Again the
agreement is excellent at least for separation distances S larger
than 1 nm. For S < 1 nm, the local field correction of eq 5a is
no longer valid. As shown by an inspection of the near-field
distribution E′(̃r) of the perturbed nanorod, the failure of the
local field correction can be ascribed to the emergence of strong
gap resonance37,38 confined between the nanorod apex and the
high-permittivity nanosphere for S < 1 nm. We remark that
though the change of the resonance width in terms of 2·
Im(Δλ ̃) is small, the analytical formula is accurate enough to
capture this subtle information.
Figure 4 summarizes the tests made for protein (εp = 2.25)

shells adsorbed on a gold nanorod (R = 10 nm, L = 80 nm, and
λ ̃ = 792.55−28.02i nm) in aqueous environment (εb = 1.769).
This corresponds to sensing techniques for which a self-
assembled-monolayer analyte envelopes a metallic nano-
particle.6,32,33 In Figure 4a, predictions obtained with eq 1
containing the local field correction of eq 5b are plotted as solid
curves; again quantitative agreement with fully vectorial
calculations (circles) is achieved even for shell thicknesses as
large as a few nanometers. The calculation indicates a nearly
linear dependence of Re(Δλ ̃) and Im(Δλ ̃) on the shell
thickness, consistently with experimental observations.16 In
Figure 4b, we show the scattering cross-section spectra of the
bare nanorod (blue) and the perturbed nanorod (5 nm shell,
red). The spectra are calculated using COMSOL multiphysics.
By fitting with a Lorentzian function, we find a red shift of 36
nm and a resonance broadening of ∼3.6 nm. These values,
which are inferred from spectrum characteristics that are
typically encountered in real experiments, are fully consistent
with the predictions of the closed-form expression Re(Δλ ̃) ≈
35.1 nm and −2·Im(Δλ ̃) ≈ 3.4 nm, offering a posteriori
validation of the pure QNM approach (namely, the fully
vectorial computations of frequency shift) used for testing the
accuracy of the prediction of closed-form expression in Figures
3a,b and 4a.
Finally, throughout this paper we consider single mode cases,

where the spectral responses of the metallic nanoresonators are
driven solely by a single resonance mode and the scattering or
absorption spectra are basically Lorentzian just as the ones in
Figure 4b. In multimode cases, on the other hand intricate
Fano-like spectral lineshapes11,39−42 can be observed because
the perturbation may affect several QNMs, leading to
complicated deformation in the spectral lineshapes. One may
extend the current perturbation approach to these cases,11 by
considering the interaction of the perturbation with each QNM
and obtain more physical insight. However, in this case one
must be cautious with the concepts of frequency shift and peak

broadening. Additionally, we consider nanospheres, as isolated
perturbing nanoparticles, with a well-known polarizability to
test the analytical formula; however, in general one should
ideally adopt proper polarizabilities for perturbing nanoparticles
with different shapes to determine the local field correction.36

Conclusion. We have derived a closed-form expression to
predict the localized-plasmon-resonance shift and broadening
of metallic nanoresonators induced by tiny perturbations of the
resonator near-fields. The successful derivation benefits from a
recent theoretical advance in the computation and normal-
ization of the resonance modes of lossy nanoresonators.
Verification of the accuracy of closed-form expression for
various sensing configurations has been performed by
comparison with fully vectorial calculations of the complex
eigenfrequencies of the perturbed nanoresonators. We
emphasize that the present approach is not stringently
restricted by the size or shape of the nanoresonators or
perturbations and it may be used for nanoresonators laying on a
substrate. Finally, it is worth emphasizing that, provided that
one is equipped with a Maxwell QNM solver such as the one
we have used in this work, the resonance shift is known
analytically. It would be interesting to consider extension of the
present work to nanoresonators that operate by combining
several resonances, such as complex systems sustaining Fano
resonances.43

■ ASSOCIATED CONTENT
*S Supporting Information
(1) Comparison of the present master equation with a quasi-
static formula recently published.22 (2) Analysis of the errors
resulting from the approximations made to derive the master
equation. This material is available free of charge via the
Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: philippe.lalanne@institutoptique.fr.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
J.Y. and P.L. thank M. Perrin, C. Sauvan, and J. P. Hugonin for
fruitful discussions and help. Part of the study was carried out
with financial support from “the Investments for the future”
Programme IdEx Bordeaux−LAPHIA (ANR-10-IDEX-03-02).
H.G. thanks the ERC (Complexplas), the BMBF, DFG, and
BW Stiftung for support.

■ REFERENCES
(1) Lal, S.; Link, S.; Halas, N. J. Nat. Photonics 2007, 1, 641−648.
(2) Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.;
Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Chem. Rev. 2008, 108, 494−
521.
(3) Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.;
Assunca̧õ, M.; Rosa, J.; Baptista, P. V. Sensors 2012, 12, 1657−1687.
(4) van Dijk, M. A.; Lippitz, M.; Orrit, M. Acc. Chem. Res. 2005, 38,
594−601.
(5) Zijlstra, P.; Orrit, M. Rep. Prog. Phys. 2011, 74, 106401.
(6) Anker, J.; Paige Hall, W.; Lyandres, O.; Shah, N.; Zhao, J.; Van
Duyne, R. P. Nat. Mater. 2008, 7, 442−453.
(7) Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828−3857.
(8) Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P.
Nat. Mater. 2011, 10, 631−636.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.5b00771
Nano Lett. 2015, 15, 3439−3444

3443

http://pubs.acs.org
mailto:philippe.lalanne@institutoptique.fr
http://dx.doi.org/10.1021/acs.nanolett.5b00771


(9) Ament, I.; Prasad, J.; Henkel, A.; Schmachtel, S.; Sönnichsen, C.
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