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Abstract
In this PhD tutorial the linear optical properties of aperiodic metallic photonic crystals are
studied. All structures consist of metal nanostructures on top of a waveguide material. The
incident light can excite plasmonic modes in the metal as well as photonic modes in the
waveguide. These resonant systems are coupled to each other. In the first part, samples with one-
dimensional aperiodic metal gratings are studied. For the disorder samples, the coupling
constants are compared to the experimentally obtained Urbach energies. The relation between
these two parameters is found to be dependent on the disorder model and the average grating
period. The optical properties of the samples with the quasicrystalline and fractal metal wire
arrangement are analysed with respect to their long, short, and average wire distances. The next
part deals with two-dimensional quasicrystalline metal gratings with the discs being elliptically
shaped and rotated. The optical properties of such structures are dependent on the eccentricity as
well as on the rotation angle of the discs. Afterwards, a theoretical model is developed describing
the optical properties. With the theoretical approach it is possible to calculate the desired spectra.
This model is used to predict the absorption enhancement of plasmonic solar cells.

Keywords: metallic photonic crystal, plasmon, quasicrystal, disorder, solar cell
PACS numbers: 42.70.Qs, 78.67.Pt, 61.44.Br, 78.40.Pg, 73.20.Mf, 78.20.Bh, 78.66.-w,
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(Some figures may appear in colour only in the online journal)

1. Introduction

It has been known for centuries that glasses containing small
metal particles appear in bright colours. The Lycurgus Cup is
an example of such a coloured glass. This cup is green when
light is reflected by the cup and changes its colour to red for
transmitted light [1]. These optical properties were achieved
by adding a small amount of gold and silver colloids to the
glass during the production process [2]. Already in 1857, the
optical properties of such small metal particles had been
studied by Faraday [3]. However, it was not before 1908 that
a detailed theory was developed to describe the optical
properties of small spherical metal particles [4].

In the second half of the 19th century, first investigations
into one-dimensional (1D) photonic crystals were performed
[5–7] observing a 1D photonic stop-band. However, the idea
of Yablonovitch that three-dimensional (3D) photonic crystals
can be used to suppress the spontaneous emission in semi-
conductors [8], as well as John’s idea that a reasonable dis-
order amount within a 3D photonic crystal is able to strongly
localize photons [9], were the breakthroughs in this area of
research in 1987. Two years later, Yablonovitch introduced
the name photonic crystal [10], which was commonly used
thereafter.

A huge number of applications has been proposed in the
subsequent years. Among these suggestions is the use of
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photonic crystals as waveguides to guide light around sharp
corners [11], as beam splitters [12], or as photonic crystal
fibres [13, 14]. Photonic crystals can also be used for sensing
[15–19] as well as for enhancing the efficiency of light
emitting diodes (LEDs) [20–22] and solar cells [23–25].

Most of the photonic crystal designs are based on a
refractive index variation of dielectric materials. However,
metallic photonic crystals, where one of the materials is a
metal, have also been studied [26–30]. Among these designs
are metallic photonic crystals possessing a 1D or a two-
dimensional (2D) metallic grating on top of a waveguide
material [31–33]. The nonlinear properties have also been
investigated [34–38]. Metallic photonic crystals have also
been used for several applications, such as photonic crystal
slab lenses [39], optical switches [40], or sensors [41–43].

After the discovery of quasicrystals in 1982 by Shecht-
man and his first publication in 1984 [44], Levine and
Steinhardt found that Shechtmanʼs diffraction patterns and
their computed ones assuming an icosahedral quasicrystal
match very well [45], identifying for the first time the
occurrence of a quasicrystal. These computed diffraction
patterns are based on the findings of Mackay [46], who was
the first person to find the diffraction pattern of a model
consisting of circles on the vertices of a Penrose tiling
[47, 48]. In the subsequent years, quasicrystals gained the
interest of numerous researchers. A lot of different quasi-
crystals have been discovered since then [49–52] and many
applications have been presented like making a non-stick
frying pan using a quasicrystalline coating [53], or using
quasicrystals as catalysts [53, 54] or solar light absorbers
[53, 55, 56]. For the discovery of quasicrystals, Shechtman
won the Nobel Prize in Chemistry in 2011 [57].

Not only have quasicrystalline metallic alloys been
investigated, but also other quasicrystals like colloidal
[58–60] or phononic quasicrystals [61, 62]. Quasicrystalline
structures have also been studied theoretically [63–66].
Another area of research is photonic quasicrystals. Such
photonic quasicrystals have been studied in 1D [67], 2D
[68–71], and 3D [72–74] structural arrangements.

All these photonic quasicrystals have in common that no
metals are involved. However, metallic photonic quasicrystals
have also been investigated. Whereas the quasicrystalline
arrangement of nanoholes in a metallic film has been studied
by several groups [75–77], the optical properties of the
inverse structures have not been examined so far. The above
mentioned metallic photonic crystal designs with a metallic
grating on top of a waveguide material are all based on a
periodic grating structure. Also, disordered metallic photonic
crystals have been studied in our group for 1D structural
arrangements [78–80] as well as for 2D structural arrange-
ments [81]. However, quasiperiodic structures have not been
investigated up to now.

Since quasicrystalline structures are much more isotropic
than periodic ones [82], it is interesting to study the optical
properties of such structures. In this PhD tutorial, such qua-
siperiodic structures are measured and analysed for 1D as
well as 2D structural arrangements. A theoretical model for
normal as well as for oblique light incidence is developed in

order to be able to model the optical properties of such 2D
structures. This model is based on the 1D model for dis-
ordered structures introduced by Nau [79]. The model is
experimentally confirmed by several measurements. Addi-
tionally, this model is used to predict the enhanced absorption
of such quasicrystalline structures on solar cells. In this
tutorial, the optical properties of 1D disordered and 1D fractal
structures are investigated as well.

The outline of this PhD tutorial is as follows: In
section 2, the optical properties of metallic photonic crystals
are introduced. First, the focus is on metal particles and then
on waveguide modes. Afterwards, the optical properties of the
combined structure are presented. In the next parts, the con-
cept of disordered structures as well as of fractal structures is
presented. Different construction methods for 1D as well as
for 2D quasicrystals are introduced in the following part. The
last part in section 2 presents the simulation model for 1D
disordered structures.

Section 3 explains the fabrication method of the samples
by electron-beam lithography as well as the experimental
setup and the measurement procedure.

Section 4 focuses on the 1D plasmonic structures. In the
first part, the spectra of the disordered structures are shown
and the coupling strengths between the plasmonic mode and
the waveguide mode for normal light incidence are deter-
mined. The spectra for oblique light incidence are shown next
and the different behaviour of the individual disorder samples
is analysed. Afterwards, the optical properties of the 1D
quasicrystalline structures as well as of the fractal structures
are presented.

The optical properties of the 2D plasmonic structures are
presented in section 5. This section focuses on the normal
incidence spectra of different samples first. Then, a theoretical
model for 2D structures and normal light incidence based on
the 1D disorder model of Nau [79] is developed. The calcu-
lated spectra are compared for all samples to the measured
ones verifying the model. Afterwards, the spectra measured
for oblique light incidence are presented. The theoretical
model for normal light incidence is then expanded for oblique
light incidence and the calculated spectra are compared to the
measured ones. The last part in this section presents a possible
application and predicts the absorption enhancement of a
plasmonic solar cell with a quasicrystalline gold disc
arrangement compared to one with a periodic gold disc
arrangement. As waveguide layer serves the silicon layer of
the solar cell.

The last section summarizes the results and a short out-
look on future research projects is presented.

2. Theoretical background

2.1. Metallic photonic crystals

Photonic crystals usually consist of a periodic arrangement of
different refractive indices with a periodicity in the order of
the wavelength of the incident light [83]. The modulation of
the refractive index can be changed in one, two, or three
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directions which corresponds to 1D, 2D, or 3D photonic
crystals [84].

Examples for natural photonic crystals are butterfly
wings [85], peacock feathers [86], or opals [87, 88], where
different materials are placed in such a manner that these
beautiful colours arise. This is due to the photonic band gap,
which means that specific wavelengths are reflected leading to
the different colours [84]. Photonic crystals exhibiting band
structures for photons are the electromagnetic analogue to
natural crystals with band structures for electrons [84]. Since
the photons in such structures show a similar behaviour as
electrons in normal crystals, these materials are called pho-
tonic crystals [10].

Materials with such photonic band structures are inter-
esting for plenty of applications. Yablonovitch had the idea
that the photonic band gap can suppress the spontaneous
emission of semiconductors [8]. John recommended the
introduction of a moderate amount of disorder into a 3D
periodic lattice in order to obtain a strong localization of
photons [9]. Other applications are the use of photonic crys-
tals for fast all-optical switches on a silicon chip [89], for
waveguide couplers [90], and for splitters [12].

Most photonic crystals consist of different dielectric
materials. However, it is also possible to replace at least one
of the components by a metal. Therefore, these structures are
more specifically called metallic photonic crystals [80]. By
using such metallic photonic crystals, large stop bands can be
obtained [26]. As an example, these structures can be utilized
as metallic photonic crystal filters [91, 92].

The structures studied here consist of metallic wires or
dots on top of a dielectric waveguide corresponding to 1D or
2D metallic photonic crystals. The properties of the metallic
nanostructures, the waveguide modes, as well as the complete
system are presented in the following subsections.

2.1.1. Metallic nanostructures. Metals possess electrons in
the conduction band. These electrons can be considered to
move freely in the metal [93]. With this assumption, most of
the electronic and optical properties of metals can be
described. Therefore, it is crucial to have a look at the
Drude–Lorentz–Sommerfeld model [94]. This simple model
describes the behaviour of the free electron gas when an
external electromagnetic field = ω−E E e t

0
i with amplitude E0

and frequency ω is incident on the metal. It assumes that n
conduction band electrons of the metal show the same
response to the external force as one electron multiplied by
the number of electrons [94]. The motion of the conduction
band electrons can be described by a damped harmonic
oscillator model leading to the following equation of motion

Γ+ = − ω−r r E
e

m
e¨ ˙ , (1)t

e
0

i

with e as the elementary charge, me as the electron mass, and Γ
as the damping constant. In equation (1) the restoring force is
assumed to be zero [95] meaning that the electrons are not
influenced by the ionic lattice. By using the ansatz = ω−r r e t

0
i ,

equation (1) can be solved. Together with the polarization

ε χ= − =P r Een , (2)0 DS

the free-electron Drude–Sommerfeld susceptibility

χ
ω

ω Γ

Γω

ω ω Γ
= −

+
+

+( )
i , (3)DS

p
2

2 2

p
2

2 2

as well as the dielectric function

ε χ
ω

ω Γ

Γω

ω ω Γ
= + = −

+
+

+( )
1 1 i , (4)DS

p
2

2 2

p
2

2 2

can be obtained. The Drude plasma frequency ωp is defined by

ω
ε

= e n

m
, (5)p

2

0 e

with ε0 being the vacuum permittivity.
Up to now only the conduction band electrons have been

considered. However, the interband transitions of electrons in
deeper levels play a crucial role [94]. Therefore, the dielectric
function given in equation (4) has to be expanded by an
additional term, the interband susceptibility χIB, leading to

ε χ χ= + +1 . (6)DS IB

Especially for gold these interband transitions are important.
This can be seen when the measured dielectric function is
compared to the Drude modelled values. The real and
imaginary parts of the dielectric function of gold ε1 and ε2
measured by Johnson and Christy [96] are shown as black
solid and black dashed curves in figure 1. The red curves in
this figure are modelled by using equation (4) with the Drude
plasma frequency ω = 8.6 eVp and the damping constant
Γ = 0.08 eV. Especially for the imaginary part the agree-
ment between the measured and the modelled curves is quite

Figure 1. The real part (solid lines) and the imaginary part (dashed
lines) of the dielectric function of gold. The black curves show the
measured data of [96]. The red curves are modelled by using the
Drude−Lorentz−Sommerfeld model with ω = 8.6 eVp and

Γ = 0.08 eV.
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good up to an energy of about 2 eV. The deviations are much
higher for energies above 2 eV. The increased values of the
experimentally obtained dielectric function are due to the
above mentioned interband transitions. However, the mea-
sured values of Johnson and Christy [96] are used in the
following parts of this PhD tutorial. A deeper insight into the
theory of interband transitions is given in [94].

The metal structures in this tutorial are either gold wires
or gold discs with lengths in two or three dimensions being
much smaller than the wavelength of the incident light. Due
to this spatial confinement, so-called particle plasmons [97]
(also called localized surface plasmons [98]) can be excited.
These particle plasmons can be directly excited by light
incident on the metal particle. The atomic cores are assumed
to stay at fixed positions, whereas the conduction band
electrons are forced by the external light field to oscillate
collectively around the positions of the atomic cores [94].
Since the particle size is much smaller than the incident
wavelength, the electrons are assumed to respond immedi-
ately to the incoming electromagnetic field [99]. This means
that retardation is neglected, which is known as the quasi-
static approximation [99]. Whereas the scattering and
absorption efficiencies of spherical particles can be described
by the Mie theory [4], this exact theory is not applicable for
differently shaped particles. Therefore, the quasi-static
approximation has to be used for ellipsoidal particles. As
already mentioned above, the conduction band electrons
follow the electric field of the incident light. This means that
the electrons are collectively displaced with respect to the
positive background at a specific time leading to a charge
separation. Therefore, a small particle can be approximated by
an electric dipole with dipole moment [95]

αε=p E , (7)s 0

where εs is the permittivity of the medium surrounding the
particle, α is the polarizability tensor, and E0 is the incoming
static electric field. When we assume an ellipsoidal particle
with semiaxes r1, r2, and r3 consisting of a material with
permittivity ε ε ε= ′ + ″im m m , the polarizability αj along one
of the principal axes in direction e j is defined to be [95]

α π ε ε
ε ε

=
−

− +( )
r r r

L L

4

3 1
, (8)j

j j
1 2 3

m s

s m

with j = 1, 2, or 3. This polarizability tensor only possesses
the main axis elements αj. The form factors Lj are dependent
on the geometry of the particle and are given by

∫=
+

∞

( ) ( )
L

r r r

r q f q
q

2

1
d , (9)j

j

1 2 3

0 2

with = + + +f q q r q r q r( ) ( )( )( )1
2

2
2

3
2 . This means that Lj

with + + =L L L 11 2 3 is always a value between zero and
one. For spherical particles, all three form factors are equal to
1

3
. Reducing one of the main axis diameters results in a larger

form factor while the other two form factors become smaller
[81]. The extinction, scattering, and absorption of light by a
particle are characterized by the extinction, scattering, and

absorption cross-sections C jext, , C jsc, , and C ja, for an incident
electric field vector along one of the principal axes. These
values can be calculated via [95]

α= ( )C k Im , (10)j jext,

π
α=C

k

6
, (11)j jsc,

4 2

α≈ = ( )C C k Im , (12)j j ja, ext,

with k being the propagation constant of the incoming light.
Note that C ja, and C jext, are approximately the same due to
the negligibly small scattering cross-section of small particles
[95]. However, it has been demonstrated that the scattering
cross-section linked to the radiative losses plays a crucial role
in surface enhanced Raman scattering in randomized particles
[100–102]. By inserting equation (8) into equation (10), the
following equation is obtained:

π

ε ε

ε ε ε ε

=

×
″

+ ′ − + ″⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( )

C k r r r

L L

4

3

. (13)

j

j j

ext, 1 2 3

s m

s m s
2

m
2

In order to calculate C jext, , the frequency dependent dielectric
functions of the particle and the surrounding material have to
be used.

The resonance frequency of the particle plasmon is then
given by the frequency when equation (13) is maximum
meaning that ε ε ε ε+ ′ − + ″L L[ ( )] [ ]j js m s

2
m

2 has to be
minimum. By assuming the imaginary part of the particleʼs
dielectric function ε″m to be either small or almost constant in
the vicinity of the resonance, the condition
ε ε′ = − − L L(1 )j jm s has to be fulfilled [94]. If εs was
changed to higher values, the resonance frequency of the
particle plasmon would appear at a value corresponding to a
lower ε ′m. This would lead to a shift to lower resonance
frequencies (see real part of the dielectric function of gold in
figure 1) for all three particle plasmons. If the form factor
changed to higher values, the particle plasmon should shift to
higher resonance frequencies. At the same time, the resonance
frequency of at least one of the other particle plasmons should
shift to lower values due to the condition + + =L L L 11 2 3 .
The assumption that ε″m is either small or almost constant in
the vicinity of the resonance is not necessarily true. This
assumption is only used to get a feeling for the behaviour of
the resonance frequencies when one parameter is changed.

Since the particles in this tutorial are surrounded by
different materials above and below, the dielectric function εs

can be averaged by [94, 103]

ε ε ε≈ +( ). (14)s
1

2 air sub

εair and εsub in this equation denote the dielectric functions of
air and substrate material, respectively.

A special case of structures in this tutorial is given by a
gold wire array. These wires possess a spatial confinement in
only two dimensions, which is in our case the height and the
width. The extinction spectra of a gold nanowire array on top
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of a quartz substrate, which are calculated by using a
scattering matrix (S-matrix) formalism [104, 105], are shown
in figure 2. Each wire has a width of 100 nm and a height of
20 nm, the period of the grating is 300 nm. The special
feature can be seen by looking at the two different spectra.
When the polarization of the normally incident light has a
polarization perpendicular to the wires (black solid line), a
particle plasmon resonance can be excited. Thus, a broad peak
is visible in the spectrum. The resonance energy of this
particle plasmon is determined by the cross-section of the
wire, namely the width and the height. When the normally
incident light is polarized along the wires, no particle plasmon
can be excited. Therefore, only a flat line can be obtained in
the spectrum (red dashed line). This is due to the length of the
wire, which is too long for a particle plasmon to be excited.
Only a surface plasmon along the wire could be excited with
the help of a grating coupler along this direction or a prism.
However, this is not treated within this work.

In another part of this tutorial, the optical properties of
gold discs are investigated. These discs are elliptically shaped
cylinders. However, they can be approximated by an
ellipsoid. According to the quasi-static approximation pre-
sented above, the excited particle plasmons along the three
principal axes possess three different resonance energies. Due
to the much smaller height compared to the other main axis
diameters, the particle plasmon for a polarization parallel to
the height is located outside the measured energy range.

2.1.2. Waveguide modes. A waveguide is a dielectric
material with a higher index of refraction than the
surrounding medium [106], which in the samples studied
here is a system of three layers with the waveguide layer of
thickness twg in the centre (figure 3). The dielectric constants
of the cover, the waveguide, and the substrate are given by εc,
εwg, and εsub. Waves can propagate in such a waveguide when
twg is greater than a specific minimum thickness tmin [107]. It

can be considered that a wave inside the waveguide follows a
path from the top surface in x–z direction to the bottom
surface, where it is reflected by total internal reflection, and
then going back to the top surface, where it is again totally
reflected [108] (see figure 3). For such waves, either the
electric field vector E or the magnetic field vector H is
perpendicular to the direction of propagation βp , which is

called transverse electric (TE) or transverse magnetic (TM)
polarization, respectively. This means that for TE
polarization, the E vector has only a component in y
direction ( =E eEy y), whereas the H vector has components
in x as well as in z direction ( = +H e eH Hx x z z). However,
for TM polarization the H vector exhibits a y component and
the E vector one in x and one in z direction ( =H eHy y,

= +E e eE Ex x z z). The waves in the waveguide layer are
assumed to be planar, whereas the fields outside are
evanescent. Therefore, the field amplitudes can be described
by [81, 109, 110]

β ω= −

<

⎡⎣ ⎤⎦( )E A x t

z

e exp i

for 0, (15)

pz
y, c TE p

β ω= + −

⩽ ⩽

− ⎡⎣ ⎤⎦( )( )E B C x t

z t

e e exp i

for 0 , (16)

k z k z
y, wg TE

i
TE

i
p

wg

z z

β ω= −

>

− ⎡⎣ ⎤⎦( )E D x t

z t

e exp i

for , (17)

qz
y, sub TE p

wg

for TE polarization and by

β ω= −

<

⎡⎣ ⎤⎦( )H A x t

z

e exp i

for 0, (18)

pz
y, c TM p

β ω= + −

⩽ ⩽

− ⎡⎣ ⎤⎦( ) ( )H B C x t

z t

e e exp i

for 0 , (19)

k z k z
y, wg TM

i
TM

i
p

wg

z z

Figure 2. Simulated extinction spectra of a gold nanowire array on
top of quartz for normally incident light with a polarization
perpendicular to the wires (black solid) as well as parallel to the
wires (red dashed). The gold wires of 20 nm height and 100 nm
width are periodically arranged with a periodicity of 300 nm.

Figure 3. Schematic view of a waveguide slab of the thickness twg

and the dielectric constant εwg sandwiched between a cover layer

with εc and a substrate with εsub.
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β ω= −

>

− ⎡⎣ ⎤⎦( )H D x t

z t

e exp i

for , (20)

qz
y, sub TM p

wg

for TM polarization. The corresponding Hx and Hz

components for TE polarization as well as Ex and Ez

components for TM polarization can be obtained by using
Maxwellʼs equations. In the equations above, p, q, and kz

correspond to the propagation constants in z direction in the
different materials. βp is the propagation constant of the

waveguide mode in x–y direction, ω the angular frequency of
the light, and t the time. The field amplitudes given in
equations (15)–(17) and equations (18)–(12) have to fulfil the
wave equation [81] leading to

β ε− = −p k , (21)2
p
2

0
2

c

β ε− − = −k k , (22)z
2

p
2

0
2

wg

β ε− = −q k , (23)2
p
2

0
2

sub

with ω=k c0 as the free space wavevector and c the speed
of light. At the surfaces of the different layers, the field
components Ey and Hx for TE polarization as well as Hy and
Ex for TM polarization have to be equal in the different
materials. In order to obtain a non-trivial solution for the
components An, Bn, Cn, and Dn (n = TE or TM), the system
of four linear equations for each polarization has to be
solved leading to the dispersion relations given by
[81, 106, 110]
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0
2

wg sub

0
2

wg p
2

for TM polarization and the mth waveguide mode. The cover
layer and the substrate usually do not consist of the same
material. This means that waves in such an asymmetric
system cannot be guided below a specific cutoff energy,
which is given by [81]

ε ε
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for TM polarization.
The dispersion curves of equations (24) and (12) for

guided waves in a waveguide layer with a dielectric constant
εwg = 3.1684 and a thickness =t 180 nmwg are shown as
black solid (TE) and red dashed (TM) curves in figure 4(a).
As a reference, also the light lines of the cover (εc= 1) and the
substrate (εsub= 2.1904) are plotted as black dotted and black
dash-dotted lines. Due to the fact that the waveguide
dispersion curves are always below the light lines of the
surrounding media, the guided modes cannot be excited by
light impinging from the top or the bottom [81, 107].
Therefore, an additional momentum in the direction of
propagation is needed. For the samples in this tutorial a
grating on top of the waveguide layer is introduced (see
figure 5), where the momentum is defined by the reciprocal
lattice vector g with π=g d2 and d as the grating period.
The incoming light is diffracted at the grating and coupled
into the waveguide layer. The waves inside the waveguide are
no longer guided waves since the grating also allows that the
waves are coupled to the photon continua of the surrounding
media [105]. Therefore, these waves are called quasiguided
modes [105]. Due to the periodic arrangement of the grating,
the dispersion curves of the guided modes can be folded into
the first Brillouin zone with boundaries at π± d . The

Figure 4. Waveguide dispersion for (a) a guided wave and (b) a
quasiguided wave with a grating period =d 500 nm. The dielectric
constants of the cover, the waveguide, and the substrate are ε = 1c ,
ε = 3.1684wg , and ε = 2.1904sub , respectively.
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dispersion curves of the TE and TM quasiguided modes for a
grating with period =d 500 nm are shown in figure 4(b). One
can see that the dispersion curves for the quasiguided modes
are always above the substrate light line meaning that
quasiguided waveguide modes can be excited.

The wave vector of the incident light can also possess a
component kxy parallel to the sample surface leading to the
overall propagation constant

β = +k g. (28)xyp

ϑ= =kk k| | sinxy xy 0 is dependent on the angle of incidence
ϑ and on the absolute value of the incident wavevector k0. For
normal incidence kxy is equal to zero meaning that the
propagation constant in this case is only dependent on g. In
figure 4(b), the case for normal incidence is given by a
vertical line with =k 0xy . The straight line given by

= k E c( )xy with E as the energy, ℏ as the reduced Planck
constant, and c as the speed of light corresponds to the
incidence angle ϑ = °90 . Any straight line in-between
belongs to the incidence angle ϑ with ϑ° < < °0 90 . The
excited waveguide mode resonances correspond to the
energies when this straight line crosses the dispersion curves.
However, this is an empty lattice approximation. Deviations
of the dispersion curves in the centre of the Brillouin zone and
the Brillouin zone edge are present. This is explained in detail
in section 2.1.4.

For a 1D photonic crystal, the grating is only modulated
in one direction and, therefore, integer numbers of g have to
be added to kxy. However, for a 2D photonic crystal, meaning
a modulation in two directions, one needs to consider the
vector addition given in equation (28) [81].

The line shape in an absorbance spectrum of such
quasiguided modes is that of a Fano resonance and is given
by [111]

α =
+

+

γ

γ

−

−

( )
( )

E A
q

( )
1

, (29)

E E

E E

2

2

2

2

0

0

with A as the amplitude, E0 as the resonance energy, and γ as
the natural line width of the resonance. This is due to the

interaction between the discrete quasiguided modes and the
directly transmitted wave, which is a continuum [31]. The
ratio q describes the probability that a discrete state transfers
into a continuum. For a 1D photonic crystal and normal
incidence, only the symmetric waveguide mode can be
excited [112] leading to one sharp Fano resonance in the
extinction spectrum. This is shown in figure 6 for grating
periods varying between 350 nm (figure 6 at the top) and
550 nm (figure 6 at the bottom). The TE polarized modes in
these S-matrix calculated spectra were guided in a 180 nm
thick layer of indium-tin-oxide (ITO) on top of a quartz
substrate. One can see that the waveguide mode is shifted to
lower energies for larger grating periods. This can be
understood by the fact that the Brillouin zone edge is
dependent on the grating period as mentioned above. Thus,
the dispersion curves are folded differently into the first
Brillouin zone for each grating period. Since the Brillouin
zone edge is inversely proportional to the grating period, the
dispersion curves at the centre of the Brillouin zone
(corresponding to normal incidence) possess a lower energy
for a larger grating period.

However, for an oblique angle of incidence, two
resonances are visible in the spectrum corresponding to the
propagation constants given in equation (28) (see figure 7).
The additional peak is due to the anti-symmetric waveguide
mode that cannot be excited for normal light incidence. The
distance between the two peaks is increased for a larger angle
of incidence; one resonance is shifted to lower energies,
whereas the other resonance is shifted to higher energies (see
figure 7). This can be understood by looking at the dispersion
curves in the first Brillouin zone (see figure 4(b)). As already
explained above, the waveguide mode resonances correspond
to the energies when the straight line with

ϑ= k E c( ) · sinxy crosses the dispersion curves. The
dispersion curve is crossed by this straight line twice around
the normal incidence energy. For larger angles ϑ, this straight
line has a more gentle slope. Thus, the lower energy crossing
point is shifted to lower energy values, whereas the higher
energy crossing point is shifted to higher energy values

Figure 5. Structure design of a 1D metallic photonic crystal on top of
a waveguide layer.

Figure 6. Simulated normal incidence spectra of TE polarized
quasiguided modes with the grating period varied between 350 nm
(top) and 550 nm (bottom) in steps of 25 nm. The spectra are shifted
upward for clarity.

7

J. Opt. 16 (2014) 114001 C Bauer and H Giessen



leading to an increased energy difference between the two
peaks. All spectra in figure 7 are S-matrix calculations and are
shown for a 180 nm thick ITO waveguide layer on top of a
quartz substrate and a grating period of 450 nm. For incidence
angles close to normal incidence, only one of the peaks is
approaching the energy of the peak at normal incidence.
However, the other resonance approximates a value Δ−E E ,
where ΔE is the photonic band gap (not shown). This
behaviour is due to the interaction between the two
waveguide modes close to the centre of the first Brillouin
zone [110]. A more detailed analysis of the band structure is
given in section 2.1.4.

2.1.3. Coupled system. The previous sections covered
particle plasmons as well as waveguide modes. However,
both kinds of resonances were discussed in absence of the
respective other one. In this section, a system is considered,
where both resonances are present.

The energy of the particle plasmon is only dependent on
the cross-section of the metal particle as well as on the
dielectric functions of the metal and the surrounding medium,
whereas the waveguide mode is dependent on the grating
period. This means that a variation of the grating period only
shifts the resonance energy of the waveguide mode while that
of the particle plasmon stays constant. For simplicity,
everything is discussed for 1D metallic photonic crystals.
The special feature in this case is that the particle plasmon can
only be excited when the polarization of the incident light is
perpendicular to the metallic nanowire, which is called TM
polarization. However, for TE polarization only the wave-
guide mode can be excited.

When both resonances are in the same energy range, an
interaction between the particle plasmon and the waveguide
mode occurs leading to a new quasi-particle, the so-called
waveguide-plasmon-polariton [31]. This means that the
normal incidence spectrum always shows two peaks with a
finite energy difference between the peaks. For small grating
periods, the energy of the waveguide mode is higher than that

of the particle plasmon. In the spectrum, the broad particle
plasmon peak and the sharp waveguide mode are visible (see
upper spectra in figure 8). By increasing the grating period,
the energy of the waveguide mode is decreased as already
explained for TE polarization. In the region, where both
resonances are coupled, two broader peaks are visible; the
two branches of the waveguide-plasmon-polariton. By further
increasing the grating period, the two resonances become
decoupled again. The sharp waveguide mode is now at the
lower energy side of the particle plasmon. The spectra for
different grating periods are visible in figure 8 showing the
just described behaviour. As above for the TE polarized
spectra, the waveguide layer consists of a 180 nm thick ITO
layer on top of a quartz substrate. The grating is placed on top
of the waveguide layer and consists of gold wires with a
thickness of 20 nm and a width of 100 nm. Again, all spectra
are S-matrix simulations.

The line shape of such coupled resonances can be
described by a coupled oscillator model given by [113]

α

Γ

Γ

=

− −

− − − + −

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( )( ) ( )

E A

E E E q q E

E E E E E E E E

( ) ·

4

4
.

(30)

Pl

Pl
2 2 2

wg
2

wg Pl c
2

2

2
Pl
2 2

wg
2

c
4 2

Pl
2 2 2

wg
2 2

APl in this equation is the amplitude of the plasmon resonance
and Ec

2 is the coupling strength between the two oscillators in
the energy range E. The spectral half widths, the energies of
the individual resonances, and the oscillator strengths of the
uncoupled systems are given by Γj, Ej, and qj with j = wg
or Pl.

Plotting the resonance energies of the two peaks from the
spectra in figure 8 versus the corresponding grating period
visualizes the above described anti-crossing behaviour. This
is shown as black squares in figure 9. In this plot it is obvious
that the resonance energies from the two polariton branches
(black squares) deviate from the energies of the waveguide
mode (dashed curve) and the particle plasmon (dotted curve).

Figure 7. Simulated spectra of TE polarized quasiguided modes with
the angle of incidence varied between °0 (top) and °20 (bottom) in
steps of °2 . The grating period was 450 nm. The spectra are shifted
upward for clarity.

Figure 8. Simulated normal incidence spectra of a metallic photonic
crystal slab in TM polarization with the grating period of the gold
wires varied between 350 nm (top) and 550 nm (bottom) in steps of
25 nm. The spectra are shifted upward for clarity.
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The deviation of the polariton branches from the energies of
the uncoupled resonances is especially large in the region
around 450 nm grating period, where the energy of the
particle plasmon peak and the energy of the waveguide mode
are approximately the same. The polariton curves do not cross
each other, but the transitions from the waveguide mode to
the particle plasmon (upper black squares) and from the
particle plasmon to the waveguide mode (lower black
squares) are visible. The minimum distance between the
two polariton branches is the so-called polariton splitting ΔE
[114], which is dependent on the coupling constant V2

between the two modes.
Even though only one waveguide mode can be excited

for normal incidence due to symmetry reasons, theoretically
two waveguide mode resonances exist. These two wave-
guide modes are coupled together by the halfwidth of the
photonic band gap V1, and each of the waveguide modes is
coupled to the particle plasmon via V2. In order to describe
the anti-crossing behaviour, the following Hamiltonian has
to be used:

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

( )
( )H

E d V V

V E d V

V V E

, (31)

wg 1 2

1 wg 2

2 2 Pl

with E d( )wg as the energy of the waveguide mode dependent
on the grating period d and EPl as the energy of the particle
plasmon resonance. Equation (31) is based on equation
(4.10) of [110]. However, instead of the waveguide mode
energies for different incidence angles, the bare waveguide
mode energies for different grating periods and normal
incidence are used here. By rearranging this Hamiltonian, an
effective energy matrix Eeff can be obtained, which is given

by

=

+

−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

( )
( )E

E d V V

E d V

V E

0 2

0 0

2 0

. (32)eff

wg 1 2

wg 1

2 Pl

It is obvious that the second row is decoupled from the other
part of the matrix. Therefore, the second row as well as the
second column can be left out leading to the 2 × 2 energy
matrix given by

=
+⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

( )
E

E d V V

V E

2

2
. (33)eff

wg 1 2

2 Pl

By calculating the eigenenergies of this energy matrix, the
above mentioned anti-crossing behaviour can be obtained.
These eigenenergies are plotted for a particle plasmon
energy =E 1.82 eVPl , a coupling constant =V 0.075 eV2 ,
and a photonic band gap halfwidth =V 0.02 eV1 as red solid
curves in figure 9. It can be seen that the extinction maxima
(black squares) and the eigenenergies (red solid curves)
agree very well.

With this approach, a specific coupling constant can be
assigned to the anti-crossing behaviour of such structures. By
varying the coupling constant, the anti-crossing behaviour as
well as the polariton splitting is changed. For a particle
plasmon resonance with =E 1.82 eVPl , a halfwidth of the
photonic band gap =V 0.02 eV1 , and TM polarized wave-
guide modes in a 180 nm thick ITO layer on quartz, the
polariton branches for coupling energies of =V 75 meV2 ,

=V 50 meV2 , and =V 25meV2 are shown as black solid, red
dashed, and blue dash-dotted curves in figure 10, respectively.
It can be clearly seen that a larger polariton splitting belongs
to a higher coupling constant. Those two parameters are

connected via Δ = +E V V81
2

2
2 . The variation of the

coupling constant is especially important in the case of

Figure 9. Anti-crossing behaviour of the extinction maxima (black
squares) of figure 8 as well as the fitted eigenvalues of the
Hamiltonian (red solid curves) for =E 1.82 eVPl , =V 0.075 eV2 ,
and =V 0.02 eV1 . The uncoupled particle plasmon energies (black
dotted curve) as well as the uncoupled TM waveguide mode energies
(black dashed curve) are plotted as well.

Figure 10. Anti-crossing behaviour for different coupling constants
V2. The particle plasmon energy was kept constant to a value of

=E 1.82 eVPl . The halfwidth of the photonic band gap was
=V 0.02 eV1 .
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disordered structures as it has been shown in [107].
Section 4.1.2 of this PhD tutorial is making use of this
property.

The spectra in figure 8 were all calculated for normal
incidence. For oblique light incidence, however, three
resonances instead of two are visible as shown in figure 11.
These three resonances arise due to the excitation of the
particle plasmon as well as two waveguide modes. As already
explained for TE polarization, the second waveguide mode
corresponds to the anti-symmetric waveguide mode that
cannot be excited for normal incidence. Both waveguide
modes are coupled to the particle plasmon forming a
waveguide-plasmon-polariton. By increasing the angle of
incidence, the energy difference between the two waveguide
modes also increases. The lower energy waveguide mode
shifts to lower energies, whereas the higher energy waveguide
mode shifts to higher energies. This can be obtained in
figure 11 as two dips moving apart from each other. For
higher incidence angles especially the waveguide mode on the
lower energy side of the particle plasmon is visible as a sharp
peak like in the spectra with TE polarization. However, the
symmetry of the line shape for the lower energy waveguide
mode of the °20 spectrum in TM polarization (see bottom
curve in figure 11) is reversed when compared to the
corresponding resonance in TE polarization (see bottom curve
in figure 7). This indicates a remaining influence of the
particle plasmon on the TM quasiguided mode.

While the outer two peaks are shifting to lower and
higher energies, the resonance energy of the central peak stays
approximately constant at a value of about 1.85 eV. The
spectral width of the peak in the centre increases for larger
angles of incidence, whereas the spectral widths of the other
two peaks decrease. Again, all S-matrix calculations were
performed for an ITO waveguide layer of 180 nm thickness
and a grating period of 450 nm.

2.1.4. Photonic band structure. The band structure of a 1D
metallic photonic crystal is obtained by plotting the energy

position E of the extinction maxima versus the x component
of the incident k vector kx. kx and the angle of incidence ϑ are
connected via ϑ= k E c( ) · sinx with ℏ as the reduced
Planck constant and c as the speed of light. The peak maxima
of figures 7 and 11 are shown as black squares in figures 12(a)
and (b), respectively.

A first step to approximate the energy positions of the
extinction peak maxima is the use of the above mentioned
empty lattice approximation. Due to the periodic arrange-
ment of the metal wires, the TE and TM waveguide
dispersion relations (equations (24) and (25)) can be folded
into the first Brillouin zone. The energy positions of the
folded dispersion curves at a specific kx value are the
energy positions of the quasiguided modes in a first
approximation. These folded TE and TM waveguide
dispersion relations are plotted in figures 12(a) and (b) as
blue dashed curves, respectively. The energy positions for
larger kx values are described quite well with this
approach. However, close to the centre of the first Brillouin
zone one can recognize deviations from the empty lattice
approximation. In TE polarization, a splitting, which is
called a band gap, can be seen for the black squares in
figure 12(a) around =k 0x . Such a band gap is not visible
in the empty lattice approximation (blue dashed curves). At
the edge of the first Brillouin zone such deviations can also
be obtained (not shown). The splitting is due to an
interaction between the symmetric and the anti-symmetric
quasiguided mode, which can be described by the
following Hamiltonian:

π

π
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⎛

⎝
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⎠
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E k
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V

V E k
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2

2
. (34)

wg x 1

1 wg x

E k( )wg in this equation are the energies of the bare
waveguide modes with momenta π±k d2x and V1 is the
halfwidth of the photonic band gap [110]. The waveguide
mode energies can be approximated by

π± ≈ ±E k d E ck( 2 ) ˜wg x 0 x with E0 as the bare waveguide
mode energy and c̃ as the group velocity at π≈ ±k d2x

[31]. Equation (34) is true for TE quasiguided modes as
well as for TM quasiguided modes when no particle
plasmon can be excited. Due to the fact that the dispersion
relations of the TE and the TM waveguide modes are
different, also the energy regions of the band gaps are
different. Therefore, usually no full band gap, i.e. a band
gap independent of the incident polarization [31], exists.

By calculating the eigenvalues of equation (34), the
energy positions including the interaction between the two
quasiguided modes can be obtained. This is shown as red
solid curves in figure 12(a) for =V 0.02 eV1 and TE
polarization. The agreement between the energy positions of
the peak maxima in the S-matrix calculated extinction spectra
(black squares) and the eigenvalues of the Hamiltonian is
quite good. However, the eigenvalues of the Hamiltonian are
slightly smaller than the energy positions of the peak maxima.
This is due to the fact that the peak maxima of Fano

Figure 11. Spectra of a metallic photonic crystal slab in TM
polarization with the angle of incidence varied between °0 (top) and

°20 (bottom) in steps of °2 . The grating period of the gold wires was
450 nm. The spectra are shifted upward for clarity.
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resonances are slightly shifted when compared to the energies
of the corresponding excited quasiguided modes.

In TM polarization also a particle plasmon with energy
EPl can be excited. Therefore, also the interaction between the
quasiguided modes and the particle plasmon has to be
considered. This interaction is expressed by the coupling
constant V2. The Hamiltonian describing such a system is
given by [31, 110]

π
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⎝
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V V

V E k
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V

V V E
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2 . (35)

wg x 1 2

1 wg x 2

2 2 Pl

Again, the waveguide mode energies can be approxi-
mated by the linear function π± ≈ ±E k d E ck( 2 ) ˜wg x 0 x. By
using this approximation, equation (35) can be rearranged,
just like equation (31), leading to an effective energy matrix
[31, 110]

=
+

−

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
E

E V ck V

ck E V

V E

˜ 2
˜ 0

2 0

. (36)eff

0 1 x 2

x 0 1

2 Pl

The eigenenergies of equation (36) describe now the
behaviour in the centre of the first Brillouin zone. This is
plotted as red solid curves in figure 12(b) for =E 1.82 eVPl ,

=V 0.075 eV2 , and =V 0.02 eV1 . It can be seen that the
behaviour of the resonances in the centre of the first

Brillouin zone is well described by the eigenenergies of
equation (36).

When more resonances are present in the specific energy
range, all of these modes interact with each other. This leads
to the following Hamiltonian [107]:

=

⋯
⋯
⋯

⋮ ⋮ ⋱ ⋱ ⋱

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
H

E V V V

V E V V

V V E V
, (37)

1 1, 2 1, 3 1, 4

2, 1 2 2, 3 2, 4

3, 1 3, 2 3 3, 4

where Ei are the resonance energies and =V Vi j j i, , are the
coupling constants between the ith and the jth resonance.
Equation (37) is important for 2D metallic photonic crystals,
where several waveguide modes as well as a particle plasmon
resonance can be excited. Furthermore, this equation can be
used for aperiodic structures, where also several waveguide
modes can be excited.

2.2. Disordered structures

The study of samples with specific types and degrees of
disorder is very interesting. In this tutorial two different types
of disorder are studied: frozen-phonon disorder and long-
range disorder. In frozen-phonon disordered samples the
coordinates of the wires fluctuate around the location of a
periodic grating. The analogue of this is an electronic crystal
at different temperatures, where at 0 K all atoms are placed at
a specific periodic position. However, a temperature in this
crystal being larger than 0 K leads to fluctuations of the atoms
around the equilibrium positions [93], which are called

Figure 12. Band structure of a 1D metallic photonic crystal in (a) TE polarization and (b) TM polarization. The peak maxima of the extinction
spectra calculated with S-matrix (black squares) are compared to the eigenenergies of a Hamiltonian (red solid line) as well as to the empty
lattice approximation (blue dashed line).
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phonons [115]. Increasing the temperature leads to bigger
deviations from the initial positions. This behaviour is studied
in the frozen-phonon disordered samples (or uncorrelated
disordered samples), where different degrees of disorder
correspond to different temperatures. The nth coordinate of
the wires is given by [78]

Δ= + +x x nd x , (38)n n0 0

with x0 as the location of the first wire, d0 as the period of the
periodic grating, and Δxn as the deviation of the nth wire from
the location of the periodic wire position. The degree of
disorder is given by [78]

=D
d

[%]
FWHM

100, (39)
0

where FWHM is the full width at half maximum of the dis-
tribution function.

The displacements of the nanowires around the periodic
wire positions in this PhD tutorial are either uniformly dis-
tributed (uniform distribution) or normally distributed
(Gaussian distribution). The uniform distribution is char-
acterized by having the same probability p for the wire to be
placed around the initial wire position. This is described by
the function

=
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2
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2
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In contrast, the probability of a wire with Gaussian distribu-
tion to be found at the initial wire position is highest and
decreases exponentially for larger displacements. However,
also wire positions with deviations of more than FWHM/2 are
possible. The probability of a Gaussian distribution is given
by

σ π σ
= −

−⎡
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2
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2
(41)0

2

2

with the standard deviation σ defined by

σ = FWHM

8 ln (2)
. (42)

The other disorder type studied in this tutorial, the long-
range disorder, corresponds to amorphous materials [116]. It
is also called correlated disorder since the deviations of the
wire positions of the nth wire is dependent on all −n 1
previous wires. Therefore, the nth coordinate of the wires is
in this case given by [78]

∑Δ= + +
=

x x nd x . (43)n

k

n

k0 0

1

As for frozen-phonon disorder, the degree of disorder for
long-range disorder can be obtained by equation (39). The
distribution functions used for long-range disorder are the
same as for frozen-phonon disorder, namely a uniform

distribution (equation (40)) as well as a Gaussian distribution
(equation (41)).

2.3. Fractal structures

Another type of structures studied in this PhD tutorial are 1D
fractal structures. These structures are self-similar meaning
that a similar structural arrangement can be found in different
magnification levels [117]. This can be seen by looking at the
Cantor sequence. Here, the basic element is

LSL,

with L being a long distance between two wires and S a short
distance. When we assume the distance of two neighbouring
wires to be either L0 as a long distance or S0 as a short
distance and the first basic element to be L S L0 0 0, then the
second basic element consists of =L L S L1 0 0 0 and

=S S S S1 0 0 0 leading to

  
L S L S S S L S L .

L S L

0 0 0 0 0 0 0 0 0

1 1 1

This procedure can be continued to the N th basic element
− − −L S LN N N1 1 1 with =− − − −L L S LN N N N1 2 2 2 and

=− − − −S S S SN N N N1 2 2 2. It can be seen that one basic element
consists of several smaller basic elements.

A Cantor sequence can be generated by using an
initiator and a generator [118]. The initiator for the Cantor
set is a line with the length Li and the generator is the shape
applied to the initiator, namely the division into the sequence
LSL. This generator is applied N times to the corresponding
initiator. The whole construction rule can be written as
follows. The generator consists of G parts numbered from 0
to −G 1, where a subset ⊂ … −GC {0, 1, , 1} is exchan-
ged. The whole procedure is repeated N times leading to a
structure that can be written as G NC( , , ) [119]. A Cantor set
can be written as N(3, {1}, ) when the generator consists of
the sequence LSL. This means that subset number 1 of the
G = 3 elements with length L is replaced by a block of length
S. The fractal dimensionality DF of such a Cantor set is
given by [120]

=
+( )

D
G

ln

ln( )
. (44)

G

F

1

2

Two different kinds of Cantor-like sets are used in this
PhD tutorial, namely the (3, {1}, 5) set and the (6, {1, 4}, 3)
set. Whereas the LSL sequence is applied five times for the
first Cantor set, the sequence LSLLSL for the latter one is
repeated three times. The latter Cantor set is also called
Cantor-6 sequence in this tutorial.

2.4. Quasicrystals

In 1982, Shechtman discovered a material with ten-fold
symmetry in the diffraction pattern after he has rapidly chilled
the molten mixture of aluminium and manganese [121]. The
first paper about this discovery was then published in 1984
[44]. In 2011, he won the Nobel prize in chemistry for the
discovery of quasicrystals [57].
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Quasicrystals are neither periodic nor random. Quasi-
crystals show long-range orientational order as well as long-
range quasiperiodic translational order [122]. However, no
periodic translational order can be observed. Although they
do not show any lattice periodicity, such structures exhibit a
Fourier transform with essentially discrete Fourier peaks
[123] which is due to the long-range order. In this tutorial 1D
as well as 2D quasicrystals are considered. Therefore, the
following sections cover the different methods in order to
construct 1D as well as 2D quasicrystals.

2.4.1. 1D quasicrystals. The Fibonacci sequence is an
example of a 1D quasicrystal. There are several methods in
order to obtain this sequence. The first method explained
here is making use of deflation rules. The starting point is a
block L, and in the following steps each L is replaced by
LS and each S by L [124]. This leads to the following
steps:

⋮

L
L S
L S L
L S L L S

Repeating these steps a large number of times leads to the
whole Fibonacci sequence. As above for the fractal
structures, the L is used for a long distance between two
wires and the S for a short distance between two wires. In
the real Fibonacci sequence the definition

τ=L S (45)

is used with τ as the golden ratio [122]

τ = +1 5

2
. (46)

However, in this tutorial the ratio between the long
distance L and the short distance S is not the golden ratio,
but an arbitrary number higher than 1. Therefore, the
sequences used here are only Fibonacci-like sequences.

Another possibility to obtain the Fibonacci sequence
is the projection method [125, 126], also called the cut-
and-project method [127]. In this method a subset of a
periodic grid in a higher dimension is used and the
vertices are projected onto a plane in a lower dimension
[127]. This is displayed in figure 13 for the Fibonacci
chain. A square periodic grid in two dimensions parallel to
the x and the y direction is used with a periodicity of a,
since two different lengths are wanted in the Fibonacci
chain. The line ξ is called the physical space and is rotated
by an angle α with respect to the x-axis of the periodic
grid. The line η orthogonal to ξ is called the perpendicular
space. By translating the unit square along the physical
space ξ, a strip is formed (see shaded area in figure 13).
All vertices within this strip are projected onto ξ. Whereas
the vertices on the solid line belong to the strip, the
vertices on the dashed line are not part of the strip. When

αcot is an irrational number, then the obtained sequence is
quasiperiodic [128], which is for the Fibonacci sequence

α τ=cot . The sequence on ξ is then the Fibonacci chain,
which is visualized by the yellow (long, L) as well as the
red (short, S) segments. The long (short) segments are due
to the projection of two neighbouring vertices connected
along the x-axis (y-axis) leading to α=L a cos (

α=S a sin ).
Quasicrystals can be approximated by the so-called

approximants [128]. In order to construct such approximants,
the angle α∼ between the x-axis of the periodic grid and the
direction of the projection strip is not equal to the angle α.
The expression α∼cot is given by a rational number
approximating τ [128]. This produces a periodic sequence
of the above mentioned distances L and S. The closer α∼
approximates α, the larger the unit cell is and the closer this
sequence is to the real quasiperiodic one.

In order to obtain the Fibonacci-like sequences men-
tioned above, a rectangular periodic grid with period a in x
direction and period b in y direction is used in the higher
dimensional space. The angle αnew between ξ and the x-axis
of the periodic grid is then given by α τ= b atan ( )new . Here,
a as well as b are the crucial parameters for the lengths S and
L. The short and long distances in the Fibonacci-like sequence
are now given by α=S b sin new and α=L a cos new. This
construction method assures that the short and long segments
are placed exactly in the order of the Fibonacci sequence.
However, the ratio between the segments L and S in this
sequence is not equal to τ.

A similar method to the projection method is the cut
formalism. The difference between these two methods is
that the projection method projects all vertices in the shaded
area (see figure 13) onto ξ, whereas the cut formalism uses
line segments perpendicular to ξ that are placed on every
vertex of the higher dimensional periodic grid (see
figure 14). The length h of a line segment is obtained by
projecting the unit square in the perpendicular space η.
These line segments represent atomic surfaces in the

Figure 13. The vertices within the shaded area are projected on ξ.
When the angle α between the x-axis and the ξ-axis is irrational, a
1D quasiperiodic string is obtained.
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periodic lattice [128]. Due to the finite length of the line
segments, only some intersect the physical space. At each of
the intersections an atom is placed. For an irrational slope of
the physical space, a quasiperiodic sequence is obtained.
The slope for the Fibonacci sequence is given by
α τ= −tan (1 )1 .

The cut formalism is also a good method to obtain the
Fourier transform of the quasiperiodic chain [128]. The
periodic grid including the atomic surfaces on every vertex
has to be Fourier-transformed. The periodic grid in real space
is also a periodic grid in reciprocal space, whereas the atomic
surfaces, i.e. a rectangular function, correspond to sinc
functions in reciprocal space (see figure 15). The sinc

function is given by

π
=

η
η

η

⎛
⎝⎜

⎞
⎠⎟

( )k h
sinc

2

sin
. (47)

k h

k h

2

2

The intensity of the sinc function at the intersections is equal
to the intensity of the Fourier-transformed quasiperiodic
lattice in physical space. Due to the fact that the sinc function
has values not equal to zero even for large distances from the
centre, all vertices of the periodic grid have a contribution to
the Fourier transform. This leads to a Fourier transform with a
dense set of Fourier peaks [129]. However, the Fourier peaks
are more or less pronounced. Therefore, one can see
essentially discrete Fourier peaks.

2.4.2. 2D quasicrystals. The corresponding quasicrystal to
the Fibonacci chain in 2D is the Penrose tiling. It is also
possible to use matching rules in order to obtain this lattice
[130]. Therefore, two different rhombi are used; a skinny
rhombus with interior angles of °36 and °144 and a fat
rhombus with interior angles of °72 and °108 . The matching
rules are making use of decorated tiles (see yellow rhombi in
figure 16), where only two tiles are allowed to share one side
when both the number and the direction of the arrows
correspond to each other. In that way it is possible to obtain
the whole Penrose tiling (see figure 16).

Another possibility to obtain the Penrose tiling is using
the pentagrid method [130–132]. Each one of the five grids
consists of a periodic arrangement of parallel lines. The
individual grids are rotated by an angle of °72 with respect to
the previous grid. The parallel lines in each grid are
perpendicular to one of the five directions of a star vector

Figure 14. The line segments intersecting the physical space ξ cut the
physical space into small segments of lengths L and S. When the
angle α between the x-axis and the ξ-axis is irrational, a 1D
quasiperiodic string is obtained.

Figure 15. Fourier transform of the periodic grid and the atomic
surfaces. The intensity of the sinc function at the intersections leads
to the Fourier transform of the quasiperiodic lattice in physical space.

Figure 16. Penrose tiling obtained by using decorated fat and skinny
rhombi. A fat and a skinny rhombus are shown in yellow with the
different arrows used for the matching rules.
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with [124]

π

π
=

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟
e

n

n

cos
2

5

sin
2

5

, (48)n

and n as an integer value between 0 and 4. The length of en

also determines the distance between two parallel lines of
the nth grid. The five star vectors are the projections of the
five basis vectors from a five-dimensional periodic hyper-
cubic lattice into the 2D physical space [133]. Therefore, a
vector with the dimension 5x1 can be used to describe the
position of each vertex. The five components in this vector
correspond to one of the five star vectors since all vertices in
the five-dimensional space are described by the five basis
vectors.

Each line of the grids is numbered from −∞ to +∞ and
the nth grid is shifted by the value γn in direction en. In order
to obtain the Penrose tiling given in figure 16, the condition

γ∑ == 0n n0
4 has to be fulfilled [124, 130]. In a regular grid

there should only be two grid lines intersecting with each
other [130].

Such a pentagrid is shown in figure 17, where the
different grids are coloured differently. The corresponding
star vectors are also shown. The area between two lines of one
grid belongs to the line with the lower number. To the areas
between the grid lines of all grids (see brown shaded area in
figure 17) five numbers are assigned; each number belonging
to one grid. As an example, the shaded area has the numbers
1, 0, −1, −1, and 1. In order to obtain the coordinate of one
vertex, a vector addition has to be performed by using the
directions en of the star vectors and multiplying these with the
specific number from the corresponding area. This vector
addition for the shaded area is also shown in figure 17. The
grey shaded areas in figure 17 correspond to the vertices of a
fat and a thin rhombus, which can be seen at the bottom of
this figure. By taking all areas into account, the Penrose tiling
is obtained.

As already mentioned above, the five star vectors en are
the projections of the basic vectors from a five-dimensional
hyperspace into physical space. However, these basic vectors
can also be projected into the perpendicular space. This
perpendicular space is 3D and can be divided into a 2D as
well as a 1D space. By projecting the basic vectors of the five-
dimensional space into the 2D part of the perpendicular space,
another five star vectors are obtained. This time, the rotation
between two neighbouring star vectors is °144 instead of the

°72 in physical space [133]. This can be expressed by the five
directions

π

π
=⊥

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟
e

n

n

cos
4

5

sin
4

5

, (49)n

with n as the corresponding integer value between 0 and 4.
The basic vectors kn in the five-dimensional hyperspace
with

= = =

= =

⎛
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are projected into physical space as well as into perpendi-
cular space and form the star vectors in equations (48) and
(49). The projection pn of the basic vectors kn is given by

= = ⊥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟p M k

e

e
x

· (50)n n

n

n

n5

with M being the projection matrix. Since two different
projection vectors are orthogonal to each other, each
coordinate x5n has to be equal to 1 2 . This leads to the

Figure 17. The five grids of the pentagrid method are displayed in
different colours. Two lines of the nth grid are separated by the
vector en. The corresponding five star vectors, a fat and a skinny
rhombus, as well as the vector to one specific vertex are shown at the
bottom.
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projection matrix
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(51)

which is also given in [134]. In order to obtain the whole
Penrose tiling, a subset of the vertices in the five-
dimensional hyperspace is projected into physical space.
This subset is obtained by projecting all vertices into
perpendicular space. Only those vertices whose projections
in perpendicular space lie within a specific acceptance
domain are allowed to be projected into physical
space [134].

By approximating the golden mean τ in perpendicular
space, i.e. the last three rows of M , by a rational number, the
2D approximant structures are obtained. The fact that τ is not
approximated in physical space, i.e. the first two rows of M ,
keeps the size and the shape of the fat and skinny rhombi
constant [134].

2.5. Theoretical model for 1D structures

A theoretical model for disordered 1D metallic photonic
crystals has been introduced by Nau [79, 107]. This model is
described in the following and then expanded for 2D metallic
photonic crystals for normal and oblique light incidence in
sections 5.3 and 5.6, respectively.

In a 1D metallic photonic crystal, gold nanowires are
placed on top of a waveguide layer with the modulation in x
direction of the sample (see figure 18). The location of the
nanowires can be described by setting a Dirac delta function
at each wire coordinate xn

∑δ= −f x x x( ) ( ). (52)
n

n

For disordered structures, xn is given by equations (38) or

(43). This function is Fourier-transformed leading to

∫∑

∑

δ= − −

= −

−∞

∞
[ ]

[ ]

( )F k x x k x x

k x

( ) exp i d

exp i . (53)

n

n

n

n

x x

x

The main steps of the simulation model are illustrated in
figure 19. The Fourier transform of the spatial arrangement
calculated with equation (53) is used for the relevant propa-
gation constants (see figure 19(a)). The propagation constants
kj of the Fourier peaks with amplitudes Aj are transferred to
the corresponding energies Ej by using the TE and TM
waveguide dispersion relations (equations (24) and (25)),
which is indicated for three Fourier peaks in figure 19(b). By
using the Fano formula given in equation (29), the TE
extinction spectrum in the specific energy range can be cal-
culated (figure 19(c)). Since several resonances might be
present in a spectrum, equation (29) has to be slightly mod-
ified by using the sum over all Fano resonances [79, 107]

∑α =
+

+

γ

γ

−

−

( )
( )

E A
q

( )
1

. (54)
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j

E E

E E

2

2

2

2

j

j

0

0

Equation (54) describes the TE polarized spectra quite well
(see [79]). However, in TM polarization also the particle
plasmon is present in the spectra. As already explained above,
the waveguide mode and the particle plasmon are coupled to
each other when they are in the same energy range. Therefore,
the dispersion relation for the waveguide-plasmon-polariton
(eigenenergies of equation (33)) is different when compared
to the uncoupled TM waveguide dispersion relation
(equation (25)). This means that the energies of the wave-
guide-plasmon-polariton are shifted in comparison to the
plain waveguide mode energies. The extinction spectra in TM
polarization can be obtained by using equation (30). How-
ever, for several quasiguided modes, the sum over all coupled

Figure 18. Structure design of a 1D metallic photonic crystal on top
of a waveguide layer.

16

J. Opt. 16 (2014) 114001 C Bauer and H Giessen



oscillators has to be used leading to
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The calculated spectrum of such a coupled system is shown in
figure 19(d).

The model described here is used for 1D quasiperiodic
and disordered metallic photonic crystals. However, it has to
be expanded for 2D metallic photonic crystals. This is done in
sections 5.3 and 5.6 for normal and oblique light incidence as
already mentioned above.

3. Experimental considerations

3.1. Sample fabrication

The samples in this PhD tutorial consist of a silicon dioxide
(SiO )2 substrate and a waveguide layer on top. The wave-
guide layer is either a 180 nm thick layer of Hafnium dioxide
(HfO )2 or a 180 nm thick layer of ITO. In order to pattern the
sample, two layers of Polymethylmethacrylate (PMMA) are
spin coated on the waveguide layer (figure 20 (b)) after the
sample was cleaned in an ultrasonic bath of acetone

(figure 20(a)). The molecular weight of the lower PMMA
layer is usually 200 K with a concentration of 3.5% in
chlorobenzene, whereas the molecular weight of the upper
PMMA layer is 950 K with a concentration of 1.5%. The
lower PMMA layer is more sensitive to electrons than the
upper one leading to an undercut of the exposed areas. The
photoresist is then exposed by using electron-beam litho-
graphy in order to structure the sample with the desired
geometry (figure 20(c)). The samples with an ITO layer are
directly exposed after the spin coating of the photoresist since
the ITO layer is conductive. Therefore, it minimizes charging
effects. However, the HfO2 layer is not conductive. In order
to minimize charging effects for this material, a thin layer of
Chromium (Cr) has to be evaporated on top of the PMMA
layers. After exposure, the sample is developed in a mixture
with one part of methyl isobutyl ketone and three parts of
propanol (figure 20(d)), where the exposed areas of the
PMMA are removed. The undercut is clearly visible in
figure 20(d). Before developing the HfO2 samples, the Cr
layer has to be etched away by using a chrome etch solution.
The next step in the sample fabrication is the use of an oxygen
plasma in order to remove small fractions of PMMA
remaining on the structured areas (figure 20(e)). Then, the
desired thickness of gold is evaporated (figure 20(f)), and,
finally, a lift-off process is used to remove the PMMA mask
(figure 20(g)). The solution for the lift-off process is the
commercially available N-Methyl-2-pyrrolidone. After lift-
off, the desired pattern is left on the waveguide layer
(figure 20(h)). The structured areas usually have a size of
about μ μ×100 m 100 m.

Figure 19. (a) Fourier transform of the desired structure for the relevant propagation constants. (b) The TE (blue) and TM (red) dispersion
relations connect the propagation constants to the corresponding energies. (c) Extinction spectrum in TE polarization with peak amplitudes of
the waveguide modes given by the corresponding Fourier peak amplitudes. (d) Extinction spectrum in TM polarization with peak amplitudes
of the waveguide modes given by the corresponding Fourier peak amplitudes. Adapted with permission from [79]. Copyright 2007 American
Physical Society.
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3.2. Experimental setup

The fabricated samples are measured in a white light trans-
mission setup. The schematic view of the setup is shown in
figure 21. As white light source serves a halogen lamp that is
collimated by lens L1. In order to produce a point source,
lenses L2 and L3 with pinhole P1 in the focal point are used.
The polarizer is mounted on a rotation stage so that the lin-
early polarized light behind the polarizer is variable in its x–y
direction. The objective L4 (Zeiss, A-Plan, ×10 magnifica-
tion, numerical aperture = 0.25) focuses the light on the
sample that is mounted on a rotation stage in order to be able
to vary the angle of incidence on the sample. In order to
assure a focal point diameter of approximately μ100 m, pin-
hole P2 with a diameter of μ600 m is inserted in front of the
objective. The beam behind the sample is recollimated by lens
L5 and, finally, focused by lens L6 on the spectrometer. In
order to reduce the aperture angle of the light from the sample
to °0.2 , pinhole P3 with a diameter of μ100 m is used [135].
Lens L6 can be replaced by a cylindrical lens so that the

whole CCD-chip (CCD: charge-coupled device) from the
camera attached to the spectrometer can be read out with the
wavelength information in the columns of the chip and the
different angles of incidence in the rows of the chip. This
cylindrical lens was used for the measurements in
section 4.1.3, where the band structure of the different
metallic photonic crystals can be observed.

In the spectrometer a grating with 150 lines/mm is used
in order to split up the incident light into the different spectral
components. The CCD camera of the spectrometer is cooled
by liquid nitrogen and is read out by a LabView program for
measuring the extinction spectra. First, the background Ib is
measured, which is subtracted from the reference spectrum Ir

(spectrum through the substrate and the waveguide layer) as
well as from the spectrum through the structure If . The
measured extinction spectrum is defined by the negative
logarithm of the transmission T and is calculated by

= − = −
−
−

⎛
⎝⎜

⎞
⎠⎟Ext T

I I

I I
ln ( ) ln . (56)f b

r b

Figure 20. Schematic overview of the sample fabrication process. (a) Cleaning of the sample, (b) spin coating of the double layer photoresist,
(c) electron-beam exposure, (d) developing the sample, (e) plasma ashing, (f) evaporation of gold, (g) finished structure.

Figure 21. Experimental white light transmission setup.
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4. 1D plasmonic structures

4.1. Disordered structures

Nau studied in his PhD thesis [107] the optical properties of
disordered metallic photonic crystals. Two different disorder
types (frozen-phonon and long-range disorder) were analysed,
each of them for two different distribution functions (Uniform
and Gaussian distribution). Additionally, the behaviour of the
coupling strength V2 in dependence on the disorder amount
for each disorder type and each distribution function was
calculated (see figure 22, reproduced from [80, 136] and
modified). However, this behaviour was not experimentally
confirmed. Therefore, several samples were fabricated in
order to confirm the predicted behaviour.

4.1.1. Sample designs. Four different samples were
fabricated by using electron-beam-lithography, whose
fabrication method is described in section 3.1. These four
samples are attributed to different disorder types and different
distribution functions, namely uniform frozen-phonon
disorder, uniform long-range disorder, Gaussian frozen-
phonon disorder, and Gaussian long-range disorder. The
different disorder types and distributions are described in
section 2.2. Each one of the samples consists of 20 different

μ μ×100 m 100 m-large arrays, which is shown in figure 23.
The period of the perfectly ordered grating structure d0 is
changed between 400 nm and 475 nm in steps of 25 nm,
whereas the degree of disorder is increased from 0% to 80%
in steps of 20%. The gold wires have a width of100 nm and a
height of 20 nm. They are placed on top of an ITO layer with
a thickness of 180 nm.

4.1.2. Normal incidence extinction spectra. The extinction
spectra of the above mentioned structures were measured for
normal light incidence. Figure 24 shows these spectra for
uniform frozen-phonon disorder with an average grating
period of (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d)

475 nm. The TM polarized spectra are shown as black curves
and the TE polarized spectra as red curves in each panel. The
spectra with different degrees of disorder are shifted upward
with the spectra of 0% disorder at the top and those of 80%
disorder at the bottom. In TE polarization (red curves), only
the waveguide mode can be excited. One can see that the
energy of the waveguide mode changes to lower energies for
an increasing grating period (see spectra with 0% disorder in
figures 24(a)–(d)), which is expected from theory (see
section 2.1.2). The amplitude of the resonance peak is
decreased for larger uniform frozen-phonon disorder, which is
visible for all average grating periods. For a disorder amount
of 80%, the quasiguided mode is almost vanished. Due to the
fact that no additional Fourier components arise around

π=k d2 0 for this disorder type, the optical properties are
only characterized by a reduction in amplitude but not with a
broadening of the peak [107]. In TM polarization, the particle
plasmon can be additionally excited leading to a more (see
figures 24(c) or (d)) or less (see figure 24(a)) coupled system
between waveguide mode and particle plasmon. In all
perfectly ordered structures the upper and lower polariton
branches are visible [31]. By increasing the grating period
from 400 nm to 475 nm, only the energy of the waveguide
mode is shifted. This means that the energy difference
between the two maxima is changed as expected, which can
be observed in figure 24 (compare to figure 8). It can be seen
in figure 24 that the contrast of the two peaks in the spectra
and the dip in-between is reduced for an increased disorder
amount. This can be obtained for all average grating periods.
This corresponds to the reduced peak amplitude as observable
in the TE polarized spectra. Again, no additional peaks are
visible corresponding to Fourier components only at

π=k d2 0. For a disorder amount of 80%, almost only one
broad peak is recognizable. Additionally, a broadening of the
lower energy peak can be observed in figures 24(a) and (b).
These findings agree with the optical properties of such
structures studied in [107]. Furthermore, an increase in

Figure 22. Normalized calculated coupling strength V2
Dis as a

function of disorder for different disorder types. Reproduced from
[80, 136] and modified with permission. Copyright 2007
Wiley-VCH.

Figure 23. Arrangement of the different arrays on a sample with
disorder. The average grating period was varied between 400 nm
and 475 nm and the disorder amount was changed between 0%
and 80%.
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extinction of the minimum between the two resonances is
found, which is either due to the reduced amplitude
(figures 24(c) and (d)) or to the broadened particle plasmon
resonance (figures 24(a) and (b)). Depending on d0, the
amplitude reduction affects either one of the peaks (higher
energy peak in figure 24(a)) or the dip in-between
(figure 24(d)). However, the general behaviour that the
amplitude of the waveguide mode reduces for an increasing
uniform frozen-phonon disorder and that no additional peaks
arise is independent of the individual grating period.

In comparison, a sample with Gaussian frozen-phonon
disorder was measured (figure 25). Again, the average grating
period was changed between 400 nm and 475 nm (see

figures 25(a)–(d)) and the disorder amount was varied
between 0% and 80%. Basically, a similar behaviour is
observed. In TE polarization, only the waveguide mode can
be excited and its resonance energy shifts to lower values for
larger grating periods. As it can also be seen for uniform
frozen-phonon disorder, the resonance amplitude reduces
until it disappears for about 80% disorder. However, the peak
height decreases faster when compared to uniform frozen-
phonon disorder. One can recognize that the waveguide mode
for 60% disorder is almost vanished for Gaussian frozen-
phonon disorder (figure 25), whereas this resonance is still
clearly visible for uniform frozen-phonon disorder (figure 24).
Once again, only one waveguide mode corresponding to a

Figure 24. Extinction spectra of samples with uniform frozen-phonon disorder for normal light incidence in TM (black lines) and TE (red
lines) polarization. The average grating period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder amount in each panel
is changed between 0% (top) and 80% (bottom). The different spectra are shifted upward for clarity in each panel.
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Fourier component with π=k d2 0 can be excited in this
energy range. In TM polarization, both the particle plasmon
and the waveguide mode can be excited. As it is already
described for uniform frozen-phonon disorder, the energy
difference between the two resonances is changed for
different grating periods. Increasing the Gaussian frozen-
phonon disorder amount decreases the contrast between the
peaks and the dip, but this decrease is again faster when
compared to uniform frozen-phonon disorder. This can be
obtained for a disorder amount of 60%, where the waveguide
mode is nearly vanished for Gaussian frozen-phonon disorder
(see figure 25) in comparison to a clearly visible waveguide
mode for uniform frozen-phonon disorder. As above, the
spectral width of the particle plasmon is slightly increased.

Also here, the extinction in the dip between the two polariton
branches is increased for larger disorder amounts. Therefore,
the principle behaviour is similar for these two distributions.
However, the amplitude decrease is faster for the Gaussian
frozen-phonon disorder. This is reasonable since the devia-
tions from the perfectly ordered grating positions can be
larger than the half width at half maximum (HWHM) for the
Gaussian distribution, whereas the largest possible deviation
for the uniform distribution is exactly given by HWHM.

Additionally, the optical properties of samples with
uniform long-range disorder (figure 26) and Gaussian long-
range disorder (figure 27) were measured. Again, the average
grating period was changed between 400 nm and 475 nm
(panels (a)–(d) in each figure) and the disorder amount was

Figure 25. Extinction spectra of samples with Gaussian frozen-phonon disorder for normal light incidence in TM (black lines) and TE (red
lines) polarization. The average grating period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder amount in each panel
is changed between 0% (top) and 80% (bottom). The different spectra are shifted upward for clarity in each panel.
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increased from 0% to 80%. Note that the TE polarized spectra
of all four sample types are multiplied by a factor of 2.
However, comparing these spectra to those with frozen-
phonon disorder (figures 24 and 25) reveals obvious
differences. Even though the amplitude of the waveguide
modes in TE polarization (red curves) decreases for
increasing disorder amounts as it was observed for frozen-
phonon disorder, a huge broadening of the spectral width can
be obtained. Moreover, various peaks can be recognized. This
broadening is due to the fact that several Fourier components
arise in the vicinity of π=k d2 0 for the long-range disorder.
So, in principle, the broadened peak consists of several
waveguide mode resonances at slightly different energy
positions. Due to the dense occurrence of these resonances,

they appear like one broad peak. Whereas the waveguide
mode resonances in the spectra with frozen-phonon disorder
are visible to a disorder amount of at least 60%, they are
almost completely vanished at this degree of disorder for
long-range disorder, even for the uniform distribution. For
Gaussian long-range disorder the decrease is even stronger as
it has been observed for the frozen-phonon disorder.
However, for long-range disorder this behaviour is more
difficult to recognize. In TM polarization, both polariton
branches are visible for the perfectly ordered samples. For
increasing long-range disorder, several other waveguide mode
peaks in addition to a broadening of the original two polariton
peaks can be observed. The extinction in the region between
the polariton peaks is increased due to the appearance of the

Figure 26. Extinction spectra of samples with uniform long-range disorder for normal light incidence in TM (black lines) and TE (red lines)
polarization. The average grating period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder amount in each panel is
changed between 0% (top) and 80% (bottom). The different spectra are shifted upward for clarity in each panel.
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additional waveguide mode resonances. Therefore, this
energy gap is filled up with additional modes quite easily.
By looking at the spectra with =d 475 nm0 and 40%
disorder, one can recognize a quite rough lineshape for
uniform long-range disorder (figure 26) in the spectral range
around 1.7 eV due to the additional waveguide modes. In
comparison to this curve, the spectrum for the same
periodicity and degree of disorder with uniform frozen-
phonon disorder (figure 24) shows a very smooth lineshape.
In addition to that, the minimum between the two main peaks
is shifted to higher energies for the uniform long-range
disorder. For Gaussian long-range disorder, this minimum is
not visible any more. Only the shoulder on the higher energy

side indicates the previous separation of the two polariton
branches. This means that the broadening for this distribution
is even stronger than for the uniform distribution, which is
consistent to the behaviour of the Gaussian frozen-phonon
disorder compared to that of the uniform frozen-phonon
disorder. These findings, namely the broadening of the
resonance peaks and the additionally excited waveguide
modes for the long-range disorder in comparison to the
behaviour of the frozen-phonon disordered samples, are in
agreement with the observations in [107].

In order to analyse the behaviour of the coupling strength
with increasing frozen-phonon disorder, the energy positions
of the peak maxima are plotted versus the corresponding

Figure 27. Extinction spectra of samples with Gaussian long-range disorder for normal light incidence in TM (black lines) and TE (red lines)
polarization. The average grating period d0 is (a) 400 nm, (b) 425 nm, (c) 450 nm, and (d) 475 nm. The disorder amount in each panel is
changed between 0% (top) and 80% (bottom). The different spectra are shifted upward for clarity in each panel.
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grating periods (filled squares in figure 28). This anti-crossing
behaviour is shown for uniform frozen-phonon disorder on
the left side of figure 28 and for Gaussian frozen-phonon
disorder on the right side. The degree of disorder increases
from 0% in the top panels to 80% in the bottom panels in
steps of 20%. The plots for both distribution functions have in
common that the peaks in the region of the polariton splitting

converge for larger disorder amounts indicating a decrease of
the coupling strength between the particle plasmon and the
waveguide modes. By comparing the uniform distribution to
the Gaussian distribution, one can see that the peak positions
for the Gaussian distribution are closer to each other meaning
a lower coupling strength. This can be observed especially for
40% and 60% disorder. As explained in section 2.1.3, such an

Figure 28. Anti-crossing behaviour for samples with uniform frozen-phonon disorder (left) and Gaussian frozen-phonon disorder (right). The
disorder amount increases from 0% (top) to 80% (bottom).
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anti-crossing behaviour can be described by a Hamiltonian,
which is given in equation (33). The eigenvalues of the
corresponding Hamiltonian are plotted as red curves in
figure 28. The coupling strength V2 was a fitting parameter,
whereas EPl and E d( )wg are the energies of the undisturbed
particle plasmon and the undisturbed waveguide modes for
the grating period d, respectively. The half width of the
photonic band gap is given by =V 10 meV1 . The fitted values
for the coupling strength are given in the corresponding labels
in figure 28 as well as in table 1. These values decrease for
increasing disorder amounts as expected from the above
described behaviour. This is reasonable since an increasing
disorder amount results in a smaller overlap between the
electric fields of the waveguide mode and the particle
plasmons as described in [107]. Additionally, the values for
Gaussian frozen-phonon disorder are slightly smaller than
those for uniform frozen-phonon disorder. This was also
expected as the peak distance around the polariton splitting
was smaller for Gaussian frozen-phonon disorder. This can be
understood by looking at the two distribution functions. For a
uniform distribution the maximum deviation from the
perfectly ordered grating positions is given by HWHM,
whereas larger deviations are possible for a Gaussian
distribution as already mentioned above.

The fitted values for the coupling strength are plotted in
figure 29 versus the disorder amount as red curves for
uniform frozen-phonon disorder (left) and Gaussian frozen-
phonon disorder (right). These values are compared to the
calculated ones of [107] shown as black curves in figure 29.
The principle behaviour between theoretical and experimental
curves is quite good, especially for Gaussian frozen-phonon
disorder. The experimental values for the coupling strength
for uniform frozen-phonon disorder are slightly smaller than
the theoretical values (see left panel of figure 29). However,
by comparing the fitted values of the coupling strength of the
uniform frozen-phonon disorder to the calculated ones for
both distributions, one can recognize a smaller deviation to
the curve with uniform frozen-phonon disorder. This is
especially true for higher disorder amounts. These deviations
can be due to imperfections of the fabricated structure. It is
possible that the positions of the gold wires deviate slightly
from the desired positions leading to an increase of the
disorder amount and thus a decrease of the coupling strength.
Another possibility can be due to problems finding the exact
energy position of the peak maximum, especially for the
broader peaks. Furthermore, the deviations can arise due to
the simple model for the coupling strength calculation [107].

However, the behaviour of the coupling strength is described
quite well with the theoretical model.

The behaviour of the coupling strength for the experi-
mental data with increasing disorder is shown here for frozen-
phonon disorder. However, the coupling strength for long-
range disorder cannot be obtained experimentally due to the
large amount of additional waveguide modes arising for these
samples. Therefore, a different method has to be found in
order to compare the experimentally obtained values of V2 to
the theoretically predicted ones. It is well-known that the
absorption tail of disordered structures shows an exponential
behaviour [137–140]. This is the Urbach rule, where the
absorption α in the specific region is defined by [138–140]

α α=
−⎡

⎣⎢
⎤
⎦⎥

E E

E
exp , (57)0

0

u

with α0 and E0 as two constants being almost independent of
the disorder amount and Eu as the Urbach energy. For
semiconductors and insulators it is known that an increase of
the disorder amount results in a more gentle slope of the
absorption tail when αln ( ) is plotted versus the energy E
[139]. In other words, a higher disorder amount possesses a
lower value of the slope =m E1 u. By looking at the
behaviour of the coupling strength (see figures 22 and 29),
one can also recognize a decrease for larger disorder amounts.
Therefore, there might be a relation between the Urbach slope
and the coupling strength.

Since the extinction spectra can be treated as absorption
spectra (see chapter 7.2 in [35]), the natural logarithm of the
extinction is plotted versus the photon energy for our disorder
samples. This is exemplarily shown in figure 30 for the
sample with uniform frozen-phonon disorder and an average
grating period of 400 nm. However, the following procedure
to obtain the Urbach energies is in principle the same for all
samples. In figure 30(a), the whole ln(Ext) spectrum is plotted
versus the photon energy. It can be seen that the peak height
as well as the steepness of the resonance slopes decrease for a
larger disorder amount. In order to better recognize the
steepness of the slope, the spectral range in figure 30(b) is
restricted to the region around the higher energy resonance.
To every spectrum the linear equation

= +
−⎛

⎝⎜
⎞
⎠⎟( )

E E

E
ln(Ext) ln Ext (58)0

0

u

is fitted, which can be obtained by applying the natural
logarithm to equation (57). These linear fits are shown as
dashed curves in figure 30(b) and the fitted Urbach energy
values are also specified therein. It can be seen that the slope
of each curve is quite nicely reproduced by the linear fits.
However, the gentle slope of the sample with 80% disorder is
difficult to recognize. As expected, the Urbach energy
increases for higher disorder amounts.

As already mentioned above, the Urbach energy is fitted
to the higher energy peak of all frozen-phonon spectra. The
obtained Urbach energies of the samples with uniform as well
as Gaussian frozen-phonon disorder are shown in table 2 for
different disorder amounts and different grating periods. For

Table 1. Coupling strength V2 (in meV) for uniform frozen-phonon
disorder compared to Gaussian frozen-phonon disorder for different
disorder amounts D.

Disorder amount D
0% 20% 40% 60% 80%

Uniform 54.5 48.8 36.2 23.2 9.8
Gaussian 54.5 46.8 29.4 12.0 4.5
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some 80% spectra, it was not possible to determine the
Urbach energy. It can be seen that the Urbach energy
becomes larger for all samples by increasing the disorder
amount. Furthermore, the Urbach energy increases faster for
the Gaussian distribution when compared to the correspond-
ing grating periods of the uniform distribution. This is
expected since larger deviations than FWHM/2 from the
perfect periodic grating position are possible only for the
Gaussian distribution. It can also be seen in table 2 that the
Urbach energy strongly depends on the grating period. This is
reasonable since the spectra also change significantly by
varying the grating period. However, the relation of the
grating period and the Urbach energy is not clear up to now.

In order to see if the coupling constant of the disordered
samples V2

Dis and the slope m of the Urbach energy show a
similar behaviour, V2

Dis and =m E1 u are both plotted versus

Figure 29. Calculated (black lines) and experimental (red lines) coupling strength V2 versus degree of disorder for uniform frozen-phonon
disorder (left) and Gaussian frozen-phonon disorder (right).

Figure 30. (a) The natural logarithm of the extinction ( Extln( )) is
plotted versus the photon energy of the whole measured spectral
range. (b) The same plot as in (a), but with the spectral range
restricted to the region around the resonance at higher energies. A
line is fitted to the resonance slope in order to obtain the Urbach
energy.

Table 2. Fitted Urbach energies Eu (in meV) of the samples with
uniform as well as with Gaussian frozen-phonon disorder for
different disorder amounts D (in %) and different grating periods d0
(in nm).

Disorder amount D

Period 0% 20% 40% 60% 80%

Uniform 400 nm 7.9 9.5 14 21 140
425 nm 6 6.5 9.1 17.8 350
450 nm 13.5 16 19 44 400
475 nm 54 81 220 500 —

Gaussian 400 nm 8.1 13 23 53 —

425 nm 5.4 8 18 55 —

450 nm 13.5 18 40 120 —

475 nm 54 73 250 1500 —
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the disorder amount for both distributions and all grating
periods. This is shown in figure 31 for uniform frozen-phonon
disorder and in figure 32 for Gaussian frozen-phonon
disorder. The behaviour for different average grating periods

= −d 400 nm 475 nm0 is displayed in panels (a)–(d),
respectively. Due to the unknown relation between the
coupling constant and the Urbach energy slope, two
independent y-axes are used. The relation between the two
y-axes is different for the individual grating periods, however,
it is equal for the same grating period and the two different
distributions. It can be seen in figures 31 and 32 that the
behaviour of the Urbach energy slope (red) is quite similar to
the behaviour of the disorder dependent coupling constant
(black). This is true for both the experimentally obtained and
the calculated normalized coupling constants. Some

deviations are visible like in figure 31(d) or in figure 32(a),
which can be due to the fitting process. However, the general
behaviour is reproduced quite well. Even the faster decrease
of the Gaussian frozen-phonon disorder when compared to
the uniform distribution can be seen.

Since the behaviour of the coupling constants and the
slopes of the Urbach energies is quite similar for frozen-
phonon disorder, the Urbach energies are also fitted to the
samples with long-range disorder. However, it is more
difficult to fit equation (58) to the spectra of the long-range
disorder samples. The fitted Urbach energies are shown in
table 3 for the uniform distribution as well as the Gaussian
distribution. By comparing the values in this table to those for
frozen-phonon disorder (table 2), it can be observed that the
values for long-range disorder are much higher. Additionally,

Figure 31. Experimental (filled squares) and calculated (open squares) normalized coupling constants (black) compared to the behaviour of
the Urbach slopes (red filled triangles) for uniform frozen-phonon disorder and a periodicity (a) =d 400 nm0 , (b) =d 425 nm0 , (c)

=d 450 nm0 , and (d) =d 475 nm0 .
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also the Urbach energies for the Gaussian distribution are
higher than those for the uniform distribution. This is
expected and consistent with the findings for frozen-phonon
disorder. It is also found that the Urbach energies are strongly
dependent on the grating period as above. However, the order
of magnitude for the four different samples having the same
grating period is comparable, which is true for all grating
periods.

Since the correct tendency of the Urbach energies is
found, the same plots as in figures 31 and 32 are shown for
uniform and Gaussian long-range disorder in figures 33 and
34, respectively. However, the Urbach energy slopes (red
filled triangles) are only compared to the calculated normal-
ized coupling constants (black open squares) since it was not
possible to experimentally obtain the coupling constants due
to the large amount of additionally excited waveguide modes.

Figure 32. Experimental (filled squares) and calculated (open squares) normalized coupling constants (black) compared to the behaviour of
the Urbach slopes (red filled triangles) for Gaussian frozen-phonon disorder and a periodicity (a) =d 400 nm0 , (b) =d 425 nm0 , (c)

=d 450 nm0 , and (d) =d 475 nm0 .

Table 3. Fitted Urbach energies Eu (in meV) of the samples with
uniform as well as with Gaussian long-range disorder for different
disorder amounts D (in %) and different grating periods d0 (in nm).

Disorder amount D

Period 0% 20% 40% 60% 80%

Uniform 400 nm 8 24 160 500 500
425 nm 5.5 30 175 650 550
450 nm 15 100 400 550 —

475 nm 44 550 7 eV 10 eV 10 eV

Gaussian 400 nm 8 40 430 4000 —

425 nm 5.5 50 800 1000 6000
450 nm 15 125 1000 1200 —

475 nm 44 2000 7 eV 10 eV 10 eV
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Panels (a)–(d) of figures 33 and 34 again show the different
results for the samples with average periodicities

= −d 400 nm 475 nm0 . As above, the y-axes of the Urbach
slopes are different for the varying grating periods. However,
the scale is exactly the same for one specific grating period
but other sample designs. By comparing the black and the red
curves, it can be seen that the agreement is good for all
grating periods and both distributions. Although the fitting
procedure was more difficult, also for long-range disorder the
behaviour of the coupling constants is quite well reproduced
by the behaviour of the Urbach slopes. As above, the faster
decrease of the sample with Gaussian distribution can be
obtained. Additionally, it can be seen that the samples with
long-range disorder reach much lower values for the same
disorder amount when compared to the corresponding values
of the samples with frozen-phonon disorder.

These findings indicate that the coupling constant is
somehow related to the slope of the Urbach energy. However,
this relation is not known up to now. It can just be said that
the Urbach slope is strongly dependent on the grating period.
In order to find this relation, further investigations have to be
made, which is subject to future research.

4.1.3. Angular extinction spectra. The disorder samples
described in section 4.1.1 were also measured with oblique
light incidence. For these measurements the cylindrical lens
mentioned in section 3.2 was used and the whole CCD chip
was read out. The measured angular extinction spectra in TE
polarization are shown in figure 35 for uniform frozen-
phonon disorder (panels (a)–(e)) as well as for uniform long-
range disorder (panels (f)–(j)). The extinction is colour-
coded and it is plotted versus the photon energy and the

Figure 33. Calculated normalized coupling constants (black open squares) compared to the behaviour of the Urbach slopes (red filled
triangles) for uniform long-range disorder and a periodicity (a) =d 400 nm0 , (b) =d 425 nm0 , (c) =d 450 nm0 , and (d) =d 475 nm0 .
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angle of incidence ϑ. These measurements are exemplarily
shown for an average periodicity =d 450 nm0 . However,
the behaviour for the other grating periods is similar. The
two panels at the top (figures 35(a) and (f)) show the
measurements for a perfect periodic grating arrangement.
The disorder is increased for the panels below. For oblique
light incidence on the periodic samples, two waveguide
modes are visible. The splitting between these resonances
decreases for smaller incidence angles. Whereas the upper
energy waveguide mode is always visible, the lower energy
waveguide mode vanishes for normal incidence and small
angles of incidence. It can be seen that the upper energy
waveguide mode stays at approximately the same energy for
ϑ ≈ °0 . The lower energy waveguide mode stays also at
almost constant energies for ϑ ≈ °0 , however, at a slightly
lower energy value. This is not clearly visible due to the
decreased extinction values for this waveguide mode. The

energy difference between the upper and the lower energy
waveguide modes is the photonic band gap. It can be seen
that the behaviour is equal for positive and negative
incidence angles.

Increasing the uniform frozen-phonon disorder amount
results in a reduction of the resonance height and a smaller
waveguide mode separation (see figures 35(a)–(e)). However,
the general behaviour of a larger splitting between the two
waveguide modes for increasing incidence angles is pre-
served. The band gap between the two waveguide modes
disappears for a disorder amount of approximately 60%. For a
disorder amount of 80% additional weak waveguide modes at
slightly higher energies are visible. The peak heights are
about the same for all resonances due to the strongly
decreased waveguide modes of the perfect photonic crystal
and the simultaneously increased background. However, for
higher disorder amounts it is expected that no waves can be

Figure 34. Calculated normalized coupling constants (black open squares) compared to the behaviour of the Urbach slopes (red filled
triangles) for Gaussian long-range disorder and a periodicity (a) =d 400 nm0 , (b) =d 425 nm0 , (c) =d 450 nm0 , and (d) =d 475 nm0 .
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coupled into the waveguide layer and thus leading to no
visible resonances in the spectrum.

For increased uniform long-range disorder (see
figures 35(f)–(j)) the peak heights of the waveguide modes
are also reduced. However, additional resonances arise since
the long-range order is not preserved. All of these waveguide
modes split up into two modes for oblique light incidence and
the energy difference between these two modes increases. This

can be seen by the larger energy range for bigger incidence
angles. However, for small angles of incidence the individual
waveguide modes are hardly visible due to the large amount of
additional resonances. By increasing the uniform long-range
disorder amount, the energy range in which the waveguide
modes are spread out becomes larger. The peak heights for the
same disorder amount are smaller for long-range disorder when
compared to frozen-phonon disorder. Therefore, also the
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Figure 35. Measured angular extinction spectra in TE polarization with (a)–(e) uniform frozen-phonon disorder and (f)–(j) uniform long-
range disorder. The disorder amount is increased from top (panels (a) or (f)) to bottom (panels (e) or (j)). The colour-coded extinction is
plotted versus the photon energy and the angle of incidence.
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excited waveguide modes vanish for smaller disorder amounts.
This can be seen for a disorder amount of 80%. Hardly any
resonances are visible for uniform long-range disorder,
whereas the waveguide modes for uniform frozen-phonon
disorder can still be seen. For uniform frozen-phonon disorder,
it is even possible to observe the splitting of the waveguide
modes for oblique light incidence.

Figure 36 shows the same plots as figure 35 but for
Gaussian frozen-phonon disorder (panels (a)–(e)) and for

Gaussian long-range disorder (panels (f)–(j)). The principle
behaviour is similar to that already explained for uniform
distribution. However, the peak heights decrease faster for
Gaussian distribution. This can be seen especially for 80%
frozen-phonon disorder, where the waveguide modes are
clearly visible for uniform distribution but hardly observable
for Gaussian distribution. For 20% long-range disorder, it can
be seen that the waveguide modes of the Gaussian
distribution are spread out over are larger energy range in
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Figure 36. Measured angular extinction spectra in TE polarization with (a)–(e) Gaussian frozen-phonon disorder and (f)–(j) Gaussian long-
range disorder. The disorder amount is increased from top (panels (a) or (f)) to bottom (panels (e) or (j)). The colour-coded extinction is
plotted versus the photon energy and the angle of incidence.
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comparison to the uniform distribution. Whereas the
waveguide modes for 40% uniform long-range disorder can
still clearly be seen, the resonances for 40% Gaussian long-
range disorder are already very weak. This is consistent with
the findings of the previous section.

All samples were also measured in TM polarization,
which is again exemplarily shown in figures 37 and 38 for an
average grating period =d 450 nm0 . The measurements of

the samples with uniform distribution are shown in figure 37
and those with Gaussian distribution can be seen in figure 38.
In TM polarization, not only the waveguide modes can be
excited but also the particle plasmon as already mentioned
earlier. For =d 450 nm0 , the waveguide modes and the
particle plasmon are coupled leading to the waveguide-
plasmon-polariton. Therefore, the waveguide modes in these
plots are visible as extinction dips within the broad particle
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plasmon. The behaviour of the waveguide modes in TM
polarization is similar to that in TE polarization. For frozen-
phonon disorder (panels (a)–(e) in figures 37 and 38), the dip
between the polariton-branches decreases by increasing the
disorder amount. As above, this decrease is faster for the
Gaussian distribution. This can be observed by the weaker
contrast between the dips and the neighbouring peaks for the

same disorder amount. For 60% uniform frozen-phonon
disorder the dips are still visible, whereas the waveguide
modes for 60% Gaussian frozen-phonon disorder cannot be
recognized any more. Instead, only the particle plasmon peak
is visible. The amplitude of the particle plasmon also
decreases for larger disorder amounts, which is true for both
distributions.
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Figure 38. Measured angular extinction spectra in TM polarization with (a)–(e) Gaussian frozen-phonon disorder and (f)–(j) Gaussian long-
range disorder. The disorder amount is increased from top (panels (a) or (f)) to bottom (panels (e) or (j)). The colour-coded extinction is
plotted versus the photon energy and the angle of incidence.
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In the spectra with long-range disorder, additional
waveguide modes arise. The waveguide modes cover a
broader energy range with a smaller amplitude when
compared to the frozen-phonon measurements. Especially in
the images with 20% long-range disorder, this is clearly
visible. In comparison to the samples with 40% frozen-
phonon disorder, hardly any waveguide mode resonances are
visible for 40% long-range disorder. The contrast between
neighbouring peaks and dips is very low. As above, the
waveguide modes of the samples with Gaussian distribution
possess lower amplitudes and they are also located in a
broader energy range in comparison to the waveguide modes
of the samples with uniform distribution. For a disorder
amount of 40% and Gaussian long-range disorder it is already
hard to distinguish the individual waveguide modes, whereas
they are still recognizable for uniform long-range disorder and
the same disorder amount. As soon as the waveguide modes
are vanished, only the broad particle plasmon peak is visible.
Also for long-range disorder, the particle plasmon amplitude
decreases by increasing the disorder amount.

4.2. Quasiperiodic and fractal structures

In this section, the optical properties of 1D photonic crystals
are studied for different samples with quasiperiodic as well as
fractal gold wire arrangements. All samples are measured for
normal light incidence as well as for oblique light incidence.

4.2.1. Sample designs. The gold wires of the quasiperiodic
photonic crystal samples are arranged in a Fibonacci-like
sequence, as mentioned in section 2.4.1, with the short and
long segments S and L between two neighbouring wires. The
distances S and L and thus also the average grating period are
varied for the different quasiperiodic arrays and are given in
table 4.

As already mentioned in section 2.3, two different
Cantor-like sets, namely the (3, {1}, 5) set (Cantor) and the
(6, {1, 4}, 3) set (Cantor-6), are used as fractal structures.
The dimensions of the short, long and average distances are
given in tables 5 and 6 for the Cantor set and the Cantor-6 set,
respectively. For comparison, also periodic gold wire
arrangements with grating periods of 400 nm, 425 nm,
450 nm, and 475 nm are fabricated. All sample substrates
consist of quartz with a180 nm thick ITO waveguide layer on
top. The gold wires with a width of 100 nm, a thickness of
20 nm, and a length of μ100 m are placed on the waveguide
material and were fabricated via electron-beam-lithography
and a subsequent evaporation process as described in
section 3.1. Each array has a size of μ μ×100 m 100 m.

4.2.2. Normal incidence extinction spectra. The normal
incidence extinction spectra of the periodic gold wire
arrangements were measured as a reference. The TM (black
lines) and TE polarized (red lines) spectra are shown in
figure 39. The grating period was changed between

=d 400 nm0 (bottom) and =d 475 nm0 (top) in steps of
25 nm. It can be seen that only one waveguide mode is
excited for all spectra. However, the resonance peak of the

waveguide mode is shifted to lower energies for larger grating
periods. This is expected and has already been explained in
sections 2.1.2 and 2.1.3.

The first measured samples with normal light incidence
are the Fibonacci samples. The different spectra of samples
F1–F6, F7–F12, and F13–F18 are shown in figures 40–42,
respectively. Whereas TE polarized light (red lines) can only
excite the waveguide modes, TM polarized light (black lines)

Table 4. Short, long, and average distances of the different Fibonacci
samples.

Short Long Average
distance distance distance

Sample F1 ≈ 360 nm 425 nm 400 nm
Sample F2 ≈ 319 nm 450 nm 400 nm
Sample F3 ≈ 279 nm 475 nm 400 nm
Sample F4 ≈ 385 nm 450 nm 425 nm
Sample F5 ≈ 344 nm 475 nm 425 nm
Sample F6 ≈ 410 nm 475 nm 450 nm

Sample F7 400 nm ≈ 440 nm 425 nm
Sample F8 400 nm ≈ 481 nm 450 nm
Sample F9 400 nm ≈ 521 nm 475 nm
Sample F10 425 nm ≈ 465 nm 450 nm
Sample F11 425 nm ≈ 506 nm 475 nm
Sample F12 450 nm ≈ 490 nm 475 nm

Sample F13 400 nm 425 nm ≈ 415 nm
Sample F14 400 nm 450 nm ≈ 431 nm
Sample F15 400 nm 475 nm ≈ 446 nm
Sample F16 425 nm 450 nm ≈ 440 nm
Sample F17 425 nm 475 nm ≈ 456 nm
Sample F18 450 nm 475 nm ≈ 465 nm

Table 5. Short, long, and average distances of the different Cantor
samples.

Short Long Average
distance distance distance

Sample C1 ≈ 396 nm 425 nm 400 nm
Sample C2 ≈ 392 nm 450 nm 400 nm
Sample C3 ≈ 389 nm 475 nm 400 nm
Sample C4 ≈ 421 nm 450 nm 425 nm
Sample C5 ≈ 417 nm 475 nm 425 nm
Sample C6 ≈ 446 nm 475 nm 450 nm

Sample C7 400 nm ≈ 590 nm 425 nm
Sample C8 400 nm ≈ 780 nm 450 nm
Sample C9 400 nm ≈ 970 nm 475 nm
Sample C10 425 nm ≈ 615 nm 450 nm
Sample C11 425 nm ≈ 805 nm 475 nm
Sample C12 450 nm ≈ 640 nm 475 nm

Sample C13 400 nm 425 nm ≈ 403 nm
Sample C14 400 nm 450 nm ≈ 407 nm
Sample C15 400 nm 475 nm ≈ 410 nm
Sample C16 425 nm 450 nm ≈ 428 nm
Sample C17 425 nm 475 nm ≈ 432 nm
Sample C18 450 nm 475 nm ≈ 453 nm
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additionally excites the particle plasmon. By looking at the
TE polarized spectra of samples F1–F3, it is found that the
main waveguide mode is excited at the same energy position.
The only visible difference is the changing resonance
amplitude. This is also found for samples F4 and F5.
However, the waveguide mode resonance is shifted to lower
energies when compared to samples F1–F3. The energy of
sample F6 is again shifted to lower values. By looking at the
specifications of these samples (table 4), it is found that
samples F1–F3 possess an average wire distance of 400 nm
and samples F4 and F5 an average distance of 425 nm. The
average wire distance of sample F6 is 450 nm. The resonance

Table 6. Short, long, and average distances of the different Cantor-6
samples.

Short Long Average
distance distance distance

Sample C6–1 ≈ 389 nm 425 nm 400 nm
Sample C6–2 ≈ 379 nm 450 nm 400 nm
Sample C6–3 ≈ 368 nm 475 nm 400 nm
Sample C6–4 ≈ 414 nm 450 nm 425 nm
Sample C6–5 ≈ 404 nm 475 nm 425 nm
Sample C6–6 ≈ 439 nm 475 nm 450 nm

Sample C6–7 400 nm ≈ 484 nm 425 nm
Sample C6–8 400 nm ≈ 569 nm 450 nm
Sample C6–9 400 nm ≈ 653 nm 475 nm
Sample C6–10 425 nm ≈ 509 nm 450 nm
Sample C6–11 425 nm ≈ 594 nm 475 nm
Sample C6–12 450 nm ≈ 534 nm 475 nm

Sample C6–13 400 nm 425 nm ≈ 407 nm
Sample C6–14 400 nm 450 nm ≈ 415 nm
Sample C6–15 400 nm 475 nm ≈ 422 nm
Sample C6–16 425 nm 450 nm ≈ 432 nm
Sample C6–17 425 nm 475 nm ≈ 440 nm
Sample C6–18 450 nm 475 nm ≈ 457 nm

Figure 39. Extinction spectra of samples with periodic gold wire
arrangements for normal light incidence in TM (black lines) and TE
(red lines) polarization. The grating period d0 is changed from
400 nm (bottom) to 475 nm (top) in steps of 25 nm. The different
spectra are shifted upward for clarity.

Figure 40. Extinction spectra of the Fibonacci samples F1–F6 for
normal light incidence in TM (black lines) and TE (red lines)
polarization. The different spectra are shifted upward for clarity.

Figure 41. Extinction spectra of the Fibonacci samples F7–F12 for
normal light incidence in TM (black lines) and TE (red lines)
polarization. The different spectra are shifted upward for clarity.

Figure 42. Extinction spectra of the Fibonacci samples F13–F18 for
normal light incidence in TM (black lines) and TE (red lines)
polarization. The different spectra are shifted upward for clarity.
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energies of the periodic samples coincide with those of the
Fibonacci samples with the according average wire distance.
This indicates that the average wire distance is responsible for
the location of the main waveguide mode. The same is true
for the TM polarized spectra. Only the particle plasmon is
additionally excited.

If this finding that the average wire distance is
responsible for the main resonance energy was true, samples
F8 and F10 as well as samples F9, F11, and F12 should
possess the same resonance energy (see figure 41). Indeed,
this can be obtained for the corresponding measurements. By
comparing the spectra in figures 39–41, the waveguide modes
of the samples with the same average wire distance appear at
the same energies.

The waveguide mode resonance of samples F13–F15 as
well as of samples F16–F18 is shifted to lower energies by
increasing the sample number (figure 42). In contrast to the
spectra in figures 40 and 41, the resonance energies are
always different for each of the six individual samples. This
can be explained by the corresponding average wire
distances, which are never the same for these samples
(table 4). The average wire distance increases from sample
F13 to sample F15. The same is true for sample F16 to F18.
The average wire distance of sample F16 lies between that of
samples F14 and F15. This can also be obtained in the
spectra, where the waveguide mode energy of sample F16 is
between that of the other two samples.

All the measurements of the Fibonacci samples have in
common that the average wire distance determines the energy
position of the main waveguide mode resonance as well as
that the resonance amplitude is dependent on the other sample
parameters. However, the latter finding is not yet analysed in
detail. In order to understand this behaviour, the Fourier
transform of the individual samples has to be considered. The
Fourier transform is calculated by a computer program and
the analysis of the Fourier peaks is done by following the
procedure described in [141]. The starting point is the higher-
dimensional periodic real lattice (see figure 43(a)) and its
corresponding lattice in reciprocal space (see figure 43 (b)).

Since the samples in this section are only Fibonacci-like
structures, a rectangular lattice with lattice constants a in x
direction and b in y direction has to be used (compare to
figures 14 and 15 for the Fibonacci sequence). As already
mentioned in section 2.4.1, the angle αnew between the
physical space ξ and the x-axis of the periodic grid is given by

α τ= b atan ( )new . This angle is maintained in reciprocal
space. The short and long wire distances S and L are
defined by α=S b sin new and α=L a cos new, the average
wire distance M is given by τ τ= + +M S L( ) (1 ) [142].
As it is explained in [141], the reciprocal lattice points
connected by a straight line (see figure 43(b)) show periodic
contributions to the Fourier transform of the Fibonacci
sequence. The yellow dashed line segment in figure 43(b) is
repeated periodically in reciprocal physical space ξk and is
given by

π
ψ

ψ α π τ
τ

π= − = ⋯ = +
+

=k
a

S L M

2

cos
cos ( ) 2

1 2
. (59)1 new

Equation (59) indeed proves that a waveguide mode
resonance is present with an energy corresponding to the
average distance M.

When a straight line in 2D reciprocal space crosses ξk ,
the amplitude is maximum at this crossing point. By
increasing the ξk values, the distance of all the points on
this line to the ξk -axis also increases. Thus, the amplitude of
the Fourier peaks varies with the sinc function given in
equation (47). Therefore, the absolute value of the sinc
function is the envelope curve of all peaks lying on a
straight line in 2D reciprocal space. Two straight lines
(dotted lines) with angle ψ to the kx-axis are plotted in
figure 43(b). One of these two lines crosses the ξk -axis in the
centre of the reciprocal space, whereas the other one is
shifted by π a2 in kx direction. Thus, the crossing point of

the second line is given by π τ
τ

π
τ− −( )a

a b

b

a b

2 2
2 2 2 2 . Therefore, the

envelope curve corresponding to this second straight line is
shifted by the value k2 (red line segment in figure 43(b)),

Figure 43. (a) A 2D periodic lattice with periods a and b in x and y direction in order to obtain the Fibonacci-like sequence in physical space
ξ. (b) The corresponding 2D reciprocal lattice with periods π=k a2a and π=k b2b in the kx and ky direction in order to obtain the Fourier

transform of the Fibonacci-like sequence.
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which is given by

π τ
τ α

π=
−

= ⋯ =
−( )

k
a

a b L S

2

cos

2
. (60)2

2 2
new

All the points in 2D reciprocal space are covered by
periodically shifting the straight line in ±kx direction
leading to periodically shifted envelope functions. This is
also found in [141], which is shown there in figure 4.
However, in the paper of Wolny the diffraction pattern is
shown (sinc2), whereas in this tutorial the Fourier transform
is analysed (|sinc|).

The Fourier transforms of four different samples together
with three envelope curves are exemplarily shown in
figures 44 and 45. The red envelope function corresponds
to the line through the centre of the 2D reciprocal space with a
slope a b. The green and blue envelope curves correspond to
straight lines with the same slope but with a shift of π a2 and
π a4 in kx direction, respectively. Note that the Fourier peaks
do not reach the amplitude of the corresponding envelope
function, which might be due to numerical limitations of the
Fourier transform calculations. The small peaks around the
main Fourier components belong to a shifted envelope
function.

Samples F1 and F2, whose Fourier transforms are plotted
in figures 44(a) and (b), possess the same average wire
distance ( =M 400 nm). This means that the spectral distance

between two neighbouring Fourier peaks corresponding to the
same envelope function is π= ≈ × −k M2 1.57 10 m1

7 1 for
both samples. However, the difference −L S is about 65 nm
for sample F1 and about 131 nm for sample F2. Thus, the
shift k2 between two neighbouring envelope functions is
different for both samples. This also means that the first zero
of the envelope function, which also appears at k2, is different
for both samples. Since −L S is bigger for sample F2, the
halfwidth of the envelope function is smaller for this sample
leading to a faster reduction of the peak height. Therefore, the
peak height strongly depends on k2 when k1 is kept constant.
This can also be seen in the measured spectra, where the
waveguide mode resonance of samples F1 and F2 appears at
the same energy with a slightly smaller amplitude of the
sample F2 resonance. Note that all Fourier peaks of sample
F1 appear at exactly the same position as those of sample F2
even though the two Fourier transforms look completely
different. This is due to the different k2 values of the two
samples.

Samples F14 and F17, whose Fourier transforms are
displayed in figures 45(a) and (b), possess the same difference

−L S but a different average wire distance M. Since −L S is
equal to 50 nm for both samples, the halfwidths, the zeros,
and the shift of the corresponding envelope functions are the
same. However, due to the smaller average wire distance of
sample F14, two Fourier peaks of the same envelope function

Figure 44. Fourier transforms for (a) sample F1 and (b) sample F2.
The average wire distance is =M 400 nm for both samples, but the
difference −L S is higher for sample F2. Three different envelope
curves are also plotted for both samples.

Figure 45. Fourier transforms for (a) sample F14 and (b) sample F17.
The difference −L S is equal to 50 nm for both samples, but the
average wire distance is higher for sample F17. Three different
envelope curves are also plotted for both samples.
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are further apart than for sample F17. Thus, the Fourier peaks
of the two samples are not at the same position. Also in the
spectra of these two samples the energy shift of the main
waveguide mode resonance is visible.

The different spectra of all measured Fibonacci samples
are consistent with the findings presented here. By using this
approach, it is possible to tailor the sample parameters in
order to obtain the desired resonances. The individual
resonances can be shifted to other energies and the amplitudes
of the resonances can be tuned.

The next measured samples are the Cantor samples. The
spectra of samples C1–C6, C7–C12, and C13–C18 are shown
in figures 46–48, respectively. As above for the Fibonacci
samples, the TM polarized spectra are shown as black curves
and the TE polarized spectra as red curves. By looking at the
spectra with TE polarization for samples C1–C6, those of
samples C1, C4, and C6 seem to be quite similar but with a
shift of the resonance energies. All of these three spectra show
a small double peak with approximately the same separation.
The main resonances are located around the energy positions
of the average wire distance. However, the short wire distance
is also close to the average wire distance (see table 5).
Therefore, it is not clear whether the two peaks surround the
location of the average wire distance or the short wire
distance. Additionally, it cannot be clearly identified if one of
the peaks is located at the resonance position of the average or
the short wire distance. The TE spectra of samples C2 and C5
possess two clearly separated main peaks with approximately
the same energy difference between them, but at different
energy positions. It seems that the two peaks in each spectrum
are shifted to slightly higher and lower energy positions when
compared to the resonance position corresponding to the
average wire distance. Whereas the amplitude of the lower
energy peak is the bigger one in the spectra of samples C1,
C4, and C6, the higher energy peak in the spectra of samples
C2 and C5 has a slightly bigger amplitude. The two main
peaks are further separated in the TE spectra of sample C3.
They are again located around the energy position of the

average wire distance. However, the lower energy peak is a
quite broad peak with a low amplitude. It seems that this peak
consists of at least two nearby resonances. The TM polarized
spectra show in principle the same behaviour with an
additionally excited particle plasmon. However, the double
peaks in the spectra of samples C1, C4, and C6 cannot be
clearly obtained. By comparing the TM spectrum of sample
C1 to that of the periodic sample with grating period 400 nm
(see figure 39), the resonance positions appear at approxi-
mately the same energies. However, the higher energy
resonance of sample C1 is much broader, which is due to
the two waveguide modes with the small energy difference. In
the TM spectra of samples C2 and C5, the two resonances of
the mainly excited waveguide modes can be clearly obtained.
The separation of the peaks can also be recognized in the TM
spectrum of sample C3. In comparison to the TE spectrum of
sample C3, the double peak of the lower energy waveguide
mode can be seen much better in the TM spectrum. Summing
up the findings of samples C1–C6, the main waveguide mode

Figure 46. Extinction spectra of the Cantor samples C1–C6 for
normal light incidence in TM (black lines) and TE (red lines)
polarization. The different spectra are shifted upward for clarity.

Figure 47. Extinction spectra of the Cantor samples C7–C12 for
normal light incidence in TM (black lines) and TE (red lines)
polarization. The different spectra are shifted upward for clarity.

Figure 48. Extinction spectra of the Cantor samples C13–C18 for
normal light incidence in TM (black lines) and TE (red lines)
polarization. The different spectra are shifted upward for clarity.
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resonances arise at energy positions around the average wire
distance with none of the peaks located at exactly the
resonance corresponding to this distance. The separation
between the waveguide mode resonances increases for a
bigger large wire distance. It seems that the lower energy peak
consists of several resonances that are further apart from each
other for a bigger large wire distance.

In each TE polarized spectrum of samples C7–C12 (see
figure 47) only one main peak is visible. By comparing these
resonance positions to the ones in the spectra of the periodic
gratings (see figure 39), it is found that they are located at the
energy positions of the corresponding short wire distance.
The other resonances visible in the spectra of samples C1–C6
cannot be obtained here. Since all the resonances should
appear around the corresponding average wire distance, the
separation between these peaks must be quite large. In the
spectra of samples C1–C6 it is also found that the lower
energy peak consists of several resonances. These resonances
are distributed over a larger energy range with a smaller
amplitude when the large wire distance is bigger. Therefore, it
is probably hard to measure these resonances for samples
C7–C12. In the TM polarized spectra some modulations in
the particle plasmon resonance are visible, especially for
samples C7 and C9. These modulations are due to excited
waveguide modes. However, it is not clear which sample
parameters are responsible for these resonances.

The spectra of samples C13–C18 in figure 48 are quite
similar to those of samples C1–C6 in figure 46. However, the
separation between the two excited main peaks is a little bit
smaller for samples C13–C18. It has been said for samples
C1–C6 that the separation between the waveguide mode
resonances increases for a bigger large wire distance. Since
the large wire distance is the same in the corresponding
spectra of samples C1–C6 and C13–C18, the increasing
separation might be due to the increasing difference −L S.
By comparing the spectra of samples C13–C18 to those of the
periodic samples, it is found that the higher energy resonance
corresponds to the waveguide mode of the periodic sample
with a grating period equal to the short wire distance of the
Cantor sample. This is in agreement with the findings above.
It is also found that the lower energy peak consists of several
resonances that are distributed over a larger energy range for a
larger difference −L S.

In summary, the resonances in the Cantor spectra are
located around the energy corresponding to the average wire
distance and the higher energy mode corresponds to the
individual short wire distance. The lower energy peak
consists of several resonances that are distributed over a
larger energy range for an increased difference −L S. The
separation between higher and lower energy peaks is
dependent on the difference −L S. However, a detailed
analysis of the Fourier transform as in the case of the
Fibonacci-like sequence is not possible since there is no
similar construction method of the Cantor sequence making
use of a higher-dimensional space. Therefore, it is not known
which sample parameters are responsible for all the Fourier
peaks. However, all the resonances are in agreement with the

Fourier peaks in the numerically calculated Fourier transform
of the corresponding Cantor lattices.

The last measured samples were those with the Cantor-6
structured gold wire arrays. The TM (black lines) and TE (red
lines) spectra of samples C6–1–C6–6, C6–7–C6–12, and
C6–13–C6–18 are shown in figures 49–51, respectively. In all
spectra multiple waveguide mode resonances are excited. It
can be seen in the TE spectra of samples C6–1, C6–4, and
C6–6 that these resonances are excited over a small energy
range with a shift to lower energies for a higher average wire
distance. By comparing these spectra to the periodic ones, it is
found that the resonance corresponding to the average wire
distance is located between the two main resonances of the
Cantor-6 samples. In the spectra of samples C6–2 and C6–5
four main peaks are visible. They are spread over a larger
energy range when compared to samples C6–1, C6–4, and
C6–6. The resonances of sample C6–2 are located at higher
energies than the resonances of sample C6–5 due to the lower

Figure 49. Extinction spectra of the Cantor-6 samples C6–1 to C6–6
for normal light incidence in TM (black lines) and TE (red lines)
polarization. The different spectra are shifted upward for clarity.

Figure 50. Extinction spectra of the Cantor-6 samples C6–7 to
C6–12 for normal light incidence in TM (black lines) and TE (red
lines) polarization. The different spectra are shifted upward for
clarity.
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average wire distance. As for samples C6–1, C6–4, and C6–6,
the main peaks of samples C6–2 and C6–6 are centred around
the k value corresponding to the average wire distance. In the
spectrum of sample C6–3 also four main peaks centred
around π M2 are visible. These peaks cover a relatively broad
energy range. As it has been observed for the Cantor samples,
the main peaks of the Cantor-6 samples are located around the
average wire distance. The energy range over which the
resonances are excited also increases for a larger difference

−L S. However, in comparison to the Cantor samples, more
resonances are excited for the Cantor-6 samples which are
spread over a larger energy range.

The second set of Cantor-6 measurements (samples C6–7
— C6–12) is shown in figure 50. In the spectra of samples
C6–7, C6–10, and C6–12 three or four main peaks are visible.
The separation between the individual peaks is comparable
for these three spectra. The peaks are located around the
energy position of the average wire distance. The energy
range covered by the excited resonances is already large when
compared to the spectra of samples C6–1–C6–6. This can be
explained by the fact that −L S is quite large for these
samples. The peak with the highest energy is approximately
located at the resonance position corresponding to the short
wire distance. This has also been observed for the Cantor
samples. Samples C6–8, C6–9, and C6–11 also possess a
resonance at the energy of about the short wire distance.
However, this is not necessarily at the peak possessing the
highest energy. It cannot be observed in these three spectra
that the peaks are located around the energy position
corresponding to the average wire distance. This can be due
to the weaker amplitudes of the lower energy peaks. Another
possibility might be that these waveguide modes cannot be
excited due to an energy below cutoff.

The measurements of the samples C6–13–C6–18 are
consistent with the findings above. The resonance of a
periodic grating with a periodicity corresponding to the short
wire distance is always at the peak positions of one of the

higher energy peaks. The covered energy range of the main
peaks is larger for a larger difference between the L and the S
segment. All the peaks are approximately located around the
energy corresponding to the average wire distance. These
findings are consistent with those of the Cantor sample.
However, for the Cantor-6 samples more waveguide modes
are excited and the main peaks are spread over a larger energy
range. As already mentioned for the Cantor set, a detailed
analysis of the Fourier transform as in the case of the
Fibonacci-like sequence is also not possible for the Cantor-
6 set.

5. 2D plasmonic structures

In this section the measurements of 2D quasiperiodic and 2D
periodic plasmonic crystals are compared. First, the normal
incidence spectra are presented. Afterwards, a theoretical
model is developed for 2D metallic photonic crystals with
normal light incidence. Next, measurements for oblique light
incidence are shown. The theoretical model is then expanded
for inclined light incidence. In the last section, the theoretical
model is used to predict the absorbance spectra of 2D qua-
siperiodic plasmonic solar cells.

5.1. Sample designs

The samples in this section are 2D metallic photonic crystals
with gold discs on top of a hafnium dioxide (HfO2) wave-
guide layer with a thickness of =t 180 nmwg , which is shown
in figures 52(a) and (b). The gold discs of 25 nm height are
elliptically shaped and rotated by the angle γ around the x-axis
of the sample. The short main axis diameter of the gold disc
has a length du and the long main axis diameter a length dv

(see figures 52(c) and (d)). The arrangement of the gold dots
is either periodic with a periodicity of Px in x direction and
with Py in y direction (figures 52(b) and (d)) or it is quasi-
periodic with the gold discs placed on the vertices of a Pen-
rose tiling with an edge length of =P 530 nm (figures 52(a)
and (c)). Note that the Penrose tiling is not a real Penrose
tiling but an approximant, where the golden mean τ in per-
pendicular space is approximated by the rational number
τ′ = 8

5
(see equation (51) in section 2.4.2). However, in the

following sections it is just called a Penrose tiling. Two dif-
ferent periodic structures were fabricated: a square lattice with

= =P P 530 nmx y and a rectangular lattice with =P 492nmx

and =P 570 nmy . The diameters of the gold discs du and dv

as well as the rotation of the discs around the x-axis are varied
for different samples. This is indicated for the specific mea-
surements in this section.

5.2. Normal incidence extinction spectra

The gold discs of sample 1 possess an average short main axis
diameter of =d 120 nmu , an average long main axis diameter
of =d 130 nmv , and a rotation of γ = °0 around the sample
x-axis. For this sample, a second layer of 25 nm high gold
discs separated by 50 nm of magnesium fluoride (MgF2) is

Figure 51. Extinction spectra of the Cantor-6 samples C6–13 to
C6–18 for normal light incidence in TM (black lines) and TE (red
lines) polarization. The different spectra are shifted upward for
clarity.
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present as well. The intension was a coupling of the two
excited particle plasmons. When the discs in both gold par-
ticle layers are equal in size, the particle plasmons should
appear at the same photon energy. Due to the close distance to
the other gold particle, both resonances should be coupled
leading to shifts to lower energies as well as to higher ener-
gies. However, the diameters of the gold discs in the upper
layer are much smaller than those of the lower layer. There-
fore, the particle plasmon energy of the gold discs in the
upper layer is at higher energies and not in the energy range
of the measured spectra. Thus, the two particle plasmons are
not coupled to each other. The particle plasmon of the upper
gold layer is not considered in the following. Two different
structure designs were fabricated: a Penrose tiling with an
edge length =P 530 nm and a periodic lattice with

= =P P 530 nmx y . These measurements have already been
shown in [143]. However, these results are shown here in
order to compare them to other geometries of the gold discs.

The extinction spectra of the Penrose tiling and the
square lattice are displayed in figures 53(a) and (b), respec-
tively. The incident polarization is changed between α = °0
and α = − °90 in steps of − °6 . The spectrum in the centre has
a polarization of − °45 . This means that the polarization dif-
ference is °3 when compared to the previous and the fol-
lowing spectra. This is indicated by the smaller offset between
the spectra. The particle plasmon for an incident polarization
of α = °0 is located at higher energies (approximately at
1.6 eV) when compared to the particle plasmon for a polar-
ization of α = − °90 (approximately at 1.4 eV). This is due to
the fact that the main axis diameter of the gold discs in x

direction (corresponding to α = °0 ) is shorter than the one in
y direction. In the theory section 2.1.1 it is explained that a
smaller main axis diameter results in a larger form factor.
Thus, the resonance frequency (or energy) is shifted to higher
values. The red lines in figures 53(a) and (b) indicate the
location of the expected waveguide modes. For the Penrose
tiling, TE and TM polarized waveguide modes propagating in
directions °0 , °36 , … excite the first two resonances, and TE
and TM polarized waveguide modes in directions °18 , °54 , …
excite the last two resonances. For the square lattice, the first
two resonances are due to TE and TM polarized waveguide
modes along the sample x or y direction, whereas the last two
resonances arise due to TE and TM polarized waves in
diagonal direction. A more detailed description of the
expected positions of the waveguide modes is given in
section 5.3. The lower energy waveguide modes are located
within the particle plasmon resonance leading to a coupling
between the waveguide modes and the particle plasmon. This
can be seen by the fact that the expected waveguide mode
energy is not at a peak position but rather at a dip position.
For the waveguide mode resonances at approximately1.65 eV
and 1.75 eV of the Penrose tiling (figure 53(a)), it can be seen
that the red line is almost at the energy position of a peak
maximum for a polarization α = − °90 . However, due to the
fact that the particle plasmon shifts to higher energies for a
polarization of α = °0 , the coupling between the waveguide
modes and the particle plasmon is stronger leading to an
extinction maximum at slightly higher energies than the
expected ones for the waveguide modes. In the spectra of both
the quasiperiodic lattice and the periodic lattice, waveguide

Figure 52. Sample design of (a) a 2D quasiperiodic arrangement and (b) a 2D periodic arrangement of gold discs on top of a 180 nm thick HfO2

waveguide layer and a quartz substrate. The elliptically shaped dots with main axis diameters du and dv and a rotation of γ around the sample x-axis
are arranged (c) on the vertices of a Penrose tiling with an edge length P and (d) in a periodic fashion with periodicities Px and Py.
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mode resonances at four different energies are visible for
normal incidence. However, the waveguide modes differ in
their energy positions when the spectra of the Penrose tiling
are compared to those of the square lattice. The situation
changes for oblique light incidence what will be discussed in
section 5.5.

The gold discs of sample 2 possess an average short main
axis diameter of =d 97 nmu , an average long main axis
diameter of =d 118 nmv , and a rotation of γ = °40 around
the sample x-axis. For this sample, only one layer of gold
particles is present as shown in figures 52(a) and (b). The
quasiperiodic sample is a Penrose tiling with an edge length
of =P 530 nm and the two periodic samples are one sample
with a square lattice and = =P P 530 nmx y as well as one
sample with a rectangular lattice and =P 492 nmx and

=P 570 nmy .
The extinction spectra for the Penrose tiling, the square

lattice, and the rectangular lattice are shown in figures 54–56,
respectively. The polarization of the normally incident light is
changed from (a) α = °0 to α = − °90 and from (b) α = − °90
to α = − °180 in steps of − °6 . Measurements with a polar-
ization of α = − °45 as well as with α = − °135 are also
included. The spectra of the different sample designs have in
common that a particle plasmon at a photon energy of
approximately 1.6 eV is visible for a polarization of about
α = − °50 as well as a particle plasmon at approximately
1.8 eV for α = − °140 . This is due to the fact that the short
main axis of the gold discs is rotated by ° = − °40 140 and the

long main axis by ° = − °130 50 with respect to the x-axis of
the sample. Especially in the spectrum of the square lattice
with α = °0 it is visible that two particle plasmon resonances
are excited, namely that along the short main axis and that
along the long main axis. In the bottom curve of figure 55(a),
this can be obtained by the broad resonance at about 1.8 eV
and the shoulder at lower energies. This is due to the fact that
particle plasmons can only be excited along the principal
axes [94, 95].

The particle plasmon resonances are modulated by the
waveguide mode resonances leading to waveguide-plasmon-
polaritons. As already described for figure 53, the first two
and the last two waveguide mode resonances for the Penrose
tiling are due to TE and TM polarized waves propagating
along the directions °0 , °36 , … as well as to TE and TM
polarized waves propagating along °18 , °54 , …, respectively.
At approximately 1.45 eV and 1.55 eV, additional resonances
are more or less visible. The energies of these additional
resonances correspond to TE and TM polarized waves with a
propagation constant of approximately π2 (530 nm). How-
ever, it is not clear why these resonances arise since there are
no main Fourier peaks for the Penrose tiling for this k value. It
might be possible that the Fourier peaks with this k value are
enhanced in comparison to the other Fourier peaks due to
sample imperfections.

For the square lattice, the first two resonances arise due to
TE and TM polarized waves propagating in x or y direction.
The last two resonances stem from TE and TM waves

Figure 53. Extinction spectra of (a) a Penrose tiling with =P 530 nm and (b) a square lattice with = =P P 530 nmx y . The main axis

diameters of the gold discs are =d 120 nmu and =d 130 nmv with a rotation of γ = °0 around the sample x-axis. The incident polarization
was changed from α = °0 (bottom) to α = − °90 (top) in steps of − °6 . Additionally, spectra at α = − °45 are displayed. The spectra are
shifted upward for clarity.
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Figure 54. Extinction spectra of a Penrose tiling with =P 530 nm. The main axis diameters of the gold discs are =d 97 nmu and
=d 118 nmv with a rotation of γ = °40 around the sample x-axis. The incident polarization was changed from (a) α = °0 (bottom) to

α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of − °6 . Additionally, spectra at α = − °45 and α = − °135 are
displayed. The spectra are shifted upward for clarity.

Figure 55. Extinction spectra of a square lattice with = =P P 530 nmx y . The main axis diameters of the gold discs are =d 97 nmu and

=d 118 nmv with a rotation of γ = °40 around the sample x-axis. The incident polarization was changed from (a) α = °0 (bottom) to
α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of − °6 . Additionally, spectra at α = − °45 and α = − °135 are
displayed. The spectra are shifted upward for clarity.
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propagating in diagonal direction. As it can be seen in the
bottom curve of figure 55(a), the first two resonances consist
of double peaks indicating a slight deviation of the two per-
iodicities in x and y direction.

The waveguide mode resonances of the rectangular lat-
tice are due to TE and TM polarized waves propagating in y
direction, in x direction as well as in diagonal direction. The
individual resonances are more or less pronounced since TE
and TM waves in x or y direction cannot always be excited. It
is expected that only a TE polarized wave can be excited in y
direction (resonance at about 1.35 eV) and only a TM
polarized wave can be excited in x direction (resonance at
about1.65 eV) for α = °0 . By looking at the bottom spectrum
of figure 56(a), there are resonances clearly visible that are
due to TM polarized waves propagating in y direction
(resonance at about 1.45 eV) as well as due to TE polarized
waves propagating in x direction (resonance at about
1.55 eV). This deviation is connected to the particle plasmons
and will be explained in detail in section 5.3.

Another sample (sample 3) consisting of gold discs with
average main axis diameters =d 88 nmu and =d 120 nmv as
well as a rotation of γ = °25 around the x-axis of the sample
was fabricated. The second layer of smaller gold particles
separated by 50 nm MgF2 is also present for this sample.
However, the particle plasmons of the upper gold disc layer
do not influence the spectra in the measured energy range due
to the much smaller particle diameters. In order to study the
above mentioned influence of the particle plasmons due to the
rotated, elliptical gold particles in the lower gold disc layer, a
rectangular arrangement of gold discs with =P 492 nmx and

=P 570 nmy is regarded. The extinction spectra of this
sample are shown in figure 57 for normally incident light with
the polarization changed from α = °0 to α = − °90 (panel (a))
as well as from α = − °90 to α = − °180 (panel (b)) in steps of
− °6 . At first sight, the spectra of sample 3 (figure 57) are
similar to those of sample 2 (figure 56). However, one can see
that the lower energy particle plasmon resonance of sample 3
is shifted to lower energies when compared to the spectra of
sample 2. This can be clearly seen by looking at the distance
between the waveguide mode at approximately 1.35 eV and
the lower energy particle plasmon (see spectra with
α ≈ − °48 of figure 56 and with α ≈ − °66 of figure 57). The
higher energy particle plasmon stays approximately at the
same energy (see spectra with α ≈ − °138 of figure 56 and
with α ≈ − °156 of figure 57). However, it is expected that
the higher energy particle plasmon should shift to larger
energies and the lower energy particle plasmon to only
slightly lower energies due to the different particle geometry
(different form factor). This different behaviour can be
explained by the fact that the gold particles of sample 3
possess an MgF2 layer on top, whereas there is only air above
the particles of sample 2. The slightly higher refractive index
shifts both particle plasmons to lower energies (see
equation (13) and the discussion about the resonance fre-
quency in section 2.1.1) when compared to the same particle
geometry with air above the particles. Additionally, it seems
that the resonances at about 1.45 eV and 1.55 eV are less
pronounced in the α = °0 spectrum of sample 3 (bottom
curve in figure 57(a)) when compared to the corresponding
spectrum of sample 2 (bottom curve in figure 56(a)).

Figure 56. Extinction spectra of a rectangular lattice with =P 492 nmx and =P 570 nmy . The main axis diameters of the gold discs are

=d 97 nmu and =d 118 nmv with a rotation of γ = °40 around the sample x-axis. The incident polarization was changed from (a) α = °0
(bottom) to α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of − °6 . Additionally, spectra at α = − °45 and
α = − °135 are displayed. The spectra are shifted upward for clarity.
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In order to compare the behaviour of the waveguide
modes, the peak heights of the first two waveguide modes,
namely a TE as well as a TM polarized wave propagating in y
direction of the sample, are plotted in figure 58. For the peak

heights in figure 58, the difference between the maximum
extinction value of the specific resonance and the minimum
value on the higher energy side is used. A similar behaviour
can be recognized for samples 2 (black solid) and 3 (red

Figure 57. Extinction spectra of a rectangular lattice with =P 492 nmx and =P 570 nmy . The main axis diameters of the gold discs are

=d 88 nmu and =d 120 nmv with a rotation of γ = °25 around the sample x axis. The incident polarization was changed from (a) α = °0
(bottom) to α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of − °6 . Additionally, spectra at α = − °45 and
α = − °135 are displayed. The spectra are shifted upward for clarity.

Figure 58. Behaviour of the peak heights of sample 2 (black solid) compared to the peak heights of sample 3 (red dashed) versus the incident
polarization α. The peak heights of these two samples are compared for (a) a TE polarized wave propagating in y direction as well as for (b) a
TM polarized wave propagating in y direction.
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dashed). However, small deviations are visible. The peak
heights for the TE polarized wave propagating in the sample y
direction (figure 58(a)) show a minimum value at about
α = − °108 with a small shift to higher polarization angles for
sample 3 when compared to sample 2. The minimum peak
height for the TM wave propagating in y direction
(figure 58(b)) is at about α = − °156 for sample 2 and at about
α = − °168 for sample 3. This deviation is due to the differ-
ently shaped particles and the different rotation angles around
the sample x-axis. A detailed explanation of this behaviour
will be given in section 5.4.

5.3. Theoretical model for 2D structures

A theoretical model for 1D disordered and quasiperiodic
metallic photonic crystals has been introduced in section 2.5
as well as in [107] and [79]. However, for 2D metallic pho-
tonic crystals, this model has to be expanded. The first step of
the 2D theoretical model is the same as for the 1D model: the
spatial arrangement of the plasmonic particles is described by
a delta function at each lattice point. For the 2D case, this is
given by

∑δ δ= − −f x y x x y y( , ) ( ) ( ). (61)
n

n n

The nth nanodisc has the coordinates xn and yn. Next, the
2D Fourier transform is taken. In order to reduce the calcu-
lation time of the 2D Fourier transform, the projection slice
theorem is used [145, 146]. The projection slice theorem is

sketched in figure 59. It states that the 2D Fourier transform
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of a structure (figure 59 on the left) can be obtained by pro-
jecting the structure coordinates onto a line with the angle β
(figure 59 at the top)

∫ξ ξ η η=β
−∞

∞
P f( ) ( , ) d , (63)

and performing the 1D Fourier transform of this line
(figure 59 on the right)
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β ξS k( ) is then the slice of ξ ηF k k( , ) in direction β through the
centre of the Fourier transform with =ηk 0 (figure 59 at the
bottom). The whole Fourier transform is obtained for varying
β between °0 and °180 . However, due to the fact that the
Fourier transform of periodic as well as quasiperiodic lattices
show essentially discrete values [123], only these angles β
have to be considered, where the main Fourier peaks are
expected.

This Fourier transform is crucial in order to know which
waveguide modes can be excited. The normally incident light
is diffracted at the grating and coupled into the waveguide
layer in the directions of the Fourier components with the

Figure 59. Sketch of the projection slice theorem. The projection of a 2D lattice onto a line in direction β (top) and the subsequent 1D Fourier
transform (right) is equal to the 2D Fourier transform (left) and the inspection of a slice in direction β (bottom). Reproduced from [144] and
modified with permission. Copyright 2011 by the American Physical Society.
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specific propagation constants k. Incident light with a polar-
ization αE , whose electric field vector is rotated by the angle α
around the sample x-axis, can excite a TE as well as a TM
polarized waveguide mode in direction β (see figure 60(a)).
The TE (TM) polarized waveguide mode is defined to have
the electric field vector (magnetic field vector) on a plane
perpendicular to the propagating wave [147]. The compo-
nents obtained by splitting the incident polarization into a TE
as well as a TM polarized wave are given by [144]

α β= −αC C sin ( ), (65)TE

α β= −αC C cos ( ), (66)TM

with αC as a factor that is dependent on the incident wave.
This means that an incident polarization with α = °0 can only
excite a TM polarized wave in x direction (β = °0 ) and a TE
polarized wave in y direction (β = °90 ). For a rectangular
arrangement of the nanodiscs, no TE polarized wave with a
propagation constant π=k P2 x as well as no TM polarized
wave with π=k P2 y can be excited. However, for a quasi-
periodic lattice, the TE as well as the TM polarized wave is
present for any propagation constant k. By looking at the
spectra of figure 56, one can recognize that both the TE
polarized wave in x direction (resonance at 1.55 eV) and the

TM polarized wave in y direction (resonance at 1.45 eV) are
still present for α = °0 . This can only be explained by also
considering the particle plasmons.

It is well-known that the electric field vector of an inci-
dent polarization αE can only excite particle plasmons along
the principal axes u and v of a metallic particle [94, 95].
Therefore, αE has to be split into one electric field component
Eplu in u direction as well as into one electric field component
Eplv in v direction leading to [144]

α γ= −α ( )C C C cos , (67)plu u

α γ= −α ( )C C C sin , (68)plv v

for an elliptically shaped particle with a rotation γ around the
x-axis of the sample (see figure 60(b)). Cu and Cv are factors
dependent on the eccentricity as well as on the size of the
particle. These factors are related to the extinction cross-
section at the corresponding resonance energy. It is possible
now to treat these two particle plasmons as two independent
polarizations incident on the sample. Each individual electric
field vector of the particle plasmon can excite a TE as well as
a TM polarized waveguide mode in direction β leading to the
electric field components ETEu and ETMu for the plasmon in u
direction and ETEv and ETMv for the plasmon in v direction.

Figure 60. (a) TE and TM waves propagating in direction β with ETE and ETM as the vector addition of the incident polarization αE . (b) The
incident polarization excites one particle plasmon in u and one in v direction of an elliptical metal particle. (c) Each particle plasmon can
excite a TE as well as a TM polarized wave in direction β. (d) Dispersion relations of a TE (black solid) and a TM polarized (red dashed)
waveguide mode as well as those of vacuum (green short-dashed) and quartz (blue dash-dotted) for a 180 nm thick HfO2 waveguide on
quartz. Reproduced from [144] and modified with permission. Copyright 2011 by the American Physical Society.
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This is visualized in figure 60(c) as green arrows for the u
plasmon and as red arrows for the v plasmon. The obtained
components are given by [144]

β γ= − −( )C C sin , (69)TEu plu

β γ= −( )C C cos , (70)TMu plu

β γ= −( )C C cos , (71)TEv plv

β γ= −( )C C sin , (72)TMv plv

with Cplu and Cplv of equations (67) and (68), respectively.
The ‘–’ sign in equation (69) is needed since ETEu is pointing
in the opposite direction than ETE and ETEv (see figure 60(a)
and (c)).

The complete components CTE, add and CTM, add for a TE
and a TM polarized wave in direction β are obtained by
adding the individual components (equations (65), (69), and
(71) for the TE wave and equations (66), (70), and (72) for the
TM wave) leading to [144]

= + +C C C C , (73)TE, add TE TEu TEv

= + +C C C C . (74)TM, add TM TMu TMv

The Fourier transform β ξS k( ) in direction β is weighted with
the square value of CTE, add as well as CTM, add. The total
intensity of the waveguide modes can be calculated by inte-
grating the weighted β ξS k( ) over all angles β leading to [144]

∫ β=
°

°
β ξ( )F S k C d , (75)tot, TE

0

360

TE, add
2

∫ β=
°

°
β ξ( )F S k C d . (76)tot, TM

0

360

TM, add
2

The part of β ξS k( ) with positive ξk is used for β° ⩽ < °0 180
and that with negative ξk for β° ⩽ < °180 360 . Note that no
particle plasmons can be excited for dielectric nanodiscs. In
this case, CTEu, CTEv, CTMu, and CTMv are zero. For circular
metal particles, Cu is equal to Cv.

As already mentioned above, the Fourier components are
characterized by a specific k value. However, not the k value
but the corresponding energy E is needed in order to calculate
the spectrum. Therefore, the k values are transferred to the
corresponding energies by using the waveguide dispersion
relations. The dispersion relations of TE and TM waves
propagating in a 180 nm thick waveguide layer of HfO2 are
plotted in figure 60(d) as black solid and red dashed curves,
respectively. It can be seen that the energy of a TE waveguide
mode for a specific k is always lower than the energy of a TM
waveguide mode. As a reference, also the dispersion relations
of the air cover (green short-dashed) and the quartz substrate
(blue dash-dotted) are plotted.

The Fourier components of equations (75) and (76) are
characterized now by amplitudes Ak at energies Ek. In order to
calculate the spectrum, a phenomenological model is used
[148, 149]. The transmission amplitude t and the reflection

amplitude r are given by
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The directly transmitted light is described by the first term of
equation (77) with the amplitude td and the phase ϕt and the
directly reflected wave is given by the first term of
equation (78) with the amplitude rd and the phase ϕr. These
values are dependent on the structure without the plasmonic
lattice on top. The next two terms in each equation correspond
to the excited particle plasmons in u and in v direction with the
spectral widths Γplu and Γplv, the phases ϕ ϕ π= = 2,plu plv

and the plasmon energies Eplu and Eplv. The last term in each
equation is the sum over all waveguide modes that can be
guided in the energy range E. For this term, the above calcu-
lated amplitudes Ak at the corresponding energies Ek are taken
together with the spectral width Γk and the phase ϕk. The
spectral widths of the waveguide modes are assumed to be
constant for all waveguide modes in the spectrum with a value
of about 0.01 eV. It is also assumed that the spectral widths of
the two particle plasmons are equal (Γ Γ=plu plv) with a value in
the order of 0.1 eV. In the case of dielectric particles, the
plasmon amplitudes tplu, tplv, rplu, and rplv are equal to zero. For
circular discs, tplu is equal to tplv leading to only one particle

plasmon term Γ Γ− +ϕt E Ee ( i )pl pl
i

pl plpl . The same is true
for the reflected particle plasmon.

The phase of a waveguide mode without the interaction
of the particle plasmon has a value ϕ ∞j, with j being either t
for the transmitted wave or r for the reflected wave. This is
true when the energy of the waveguide mode is totally dif-
ferent to the energy of the particle plasmon. When waveguide
mode and particle plasmon possess the same energy, the
phase of the waveguide mode is shifted by a value of π with
respect to the undisturbed waveguide mode. The undisturbed
waveguide mode with a lower energy than the particle plas-
mon possesses the phase ϕ ∞j, , whereas the phase of the
undisturbed waveguide mode with a higher energy than the
particle plasmon is given by ϕ π+∞ 2j, . Thus, the phase of
the waveguide modes can be described by [144]
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For dielectric particles, the phase of the waveguide modes is
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just ϕ ∞j, . The transmittance and the reflectance spectra can

be calculated by using =T t| | 2 and =R r| | ,2 respectively.
The extinction spectrum is given by = − TExt ln ( ).

The just described simulation model for an extinction
spectrum is sketched in figure 61. The weighted Fourier
components given in equations (75) and (76) are used to
identify the amplitudes at specific k values. In figure 61(a) this
is shown for one direction β. The waveguide dispersion
relations for TE (black) and TM (red) polarized waves are
used to identify the energies to the corresponding k values of
the Fourier components (see figure 61(b)). This is done for all
directions β. Finally, the amplitudes and the corresponding
energies are used to calculate the desired extinction spectrum
(see figure 61(c)).

In order to verify our model, the extinction spectra cal-
culated with the model described above are compared to the
measured spectra of section 5.2. The first spectra are calcu-
lated for the Penrose tiling as well as for the square lattice of
sample 1, which is shown in figures 62(a) and (b), respec-
tively. As it has been explained above, the waveguide mode
resonances correspond to a TE wave or a TM wave propa-
gating in the directions given by the Fourier peaks. Since the
TE waveguide dispersion relation is always below the TM
waveguide dispersion relation, the energy of a TE resonance
is always smaller than that of a TM resonance for the same
propagation constant. For the Penrose tiling, the first two
waveguide modes correspond to TE and TM waves propa-
gating in directions β = ° ° …0 , 36 , and the last two to TE
and TM waves in directions β = ° ° …18 , 54 , . The first two
resonances for the square lattice are due to TE and TM waves
propagating in directions β = ° ° …0 , 90 , and the other two

are due to TE and TM waves propagating in diagonal direc-
tion. For the particle plasmon energies =E 1.555 eVplu and

=E 1.369 eVplv , the plasmon spectral widths
Γ Γ= = 0.2 eVplu plv , the waveguide mode spectral widths
Γ = 0.01 eVk , and amplitude and phase of the directly trans-
mitted light =t 1d and ϕ π= 0.085t , the extinction spectra
(red curves in figure 62) are calculated by using equation (77).
These parameters are dependent on the particles as well as on
the layer specifications of the sample. It is assumed that a
directly transmitted wave possesses a transmission amplitude

=t 1d . This is not necessarily true since the material without
the grating on top can also absorb part of the light leading to a
lower transmission amplitude. However, the agreement
between measured (black) and modelled (red) curves is quite
good. This is especially true for the Penrose tiling. The fitting
parameters =t 0.1434plu , =t 0.1580plv , and A = 0.0084 were
obtained by fitting the amplitudes to only one curve. All other
spectra were calculated by using the same parameters. The
fitting process is necessary so that the correct ratio between
the amplitudes is obtained.

This already indicates that the model described above
provides reasonable results. However, the spectra are also
modelled for the other samples. The Penrose tiling of sample
2 was measured for different incident polarizations (see
figure 54). The spectra were then modelled and compared to
the measured spectra, which is shown as red and black curves
in figure 63. As for sample 1, the directly transmitted light
amplitude and phase are assumed to be =t 1d and
ϕ π= 0.085t . However, the energy positions of the particle
plasmon are changed to =E 1.813 eVplu and =E 1.629 eVplv

due to the different particle shape. The phases of the particle

Figure 61. (a) Weighted Fourier components in direction β for TE (black) and TM polarization (red) in the relevant k range. (b) The TE
(black) and TM (red) dispersion relations assign the corresponding energies to the given propagation constants. (c) Extinction spectrum with
peak amplitudes of the waveguide modes given by the corresponding Fourier peak amplitudes.
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Figure 62. Measured (black) and modelled (red) extinction spectra of (a) a Penrose tiling with =P 530 nm and (b) a square lattice with
= =P P 530 nmx y . The main axis diameters of the gold discs are =d 120 nmu and =d 130 nmv with a rotation of γ = °0 around the sample

x-axis. The incident polarization was changed from α = °0 (bottom) to α = − °90 (top) in steps of − °6 . Additionally, spectra at α = − °45 are
displayed. The spectra are shifted upward for clarity.

Figure 63.Measured (black) and modelled (red) extinction spectra of a Penrose tiling with =P 530 nm. The main axis diameters of the gold
discs are =d 97 nmu and =d 118 nmv with a rotation of γ = °40 around the sample x-axis. The incident polarization was changed from (a)
α = °0 (bottom) to α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of − °6 . Additionally, spectra at α = − °45
and α = − °135 are displayed. The spectra are shifted upward for clarity.
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Figure 64.Measured (black) and modelled (red) extinction spectra of a square lattice with = =P P 530 nmx y . The main axis diameters of the

gold discs are =d 97 nmu and =d 118 nmv with a rotation of γ = °40 around the sample x-axis. The incident polarization was changed from
(a) α = °0 (bottom) to α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of− °6 . Additionally, spectra at α = − °45
and α = − °135 are displayed. The spectra are shifted upward for clarity.

Figure 65.Measured (black) and modelled (red) extinction spectra of a rectangular lattice with =P 492 nmx and =P 570 nmy . The main axis

diameters of the gold discs are =d 97 nmu and =d 118 nmv with a rotation of γ = °40 around the sample x-axis. The incident polarization
was changed from (a) α = °0 (bottom) to α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of − °6 . Additionally,
spectra at α = − °45 and α = − °135 are displayed. The spectra are shifted upward for clarity.
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plasmons are kept constant by ϕ ϕ π= = 2plu plv and the
spectral widths of the individual resonances are given by
Γ Γ= = 0.15 eVplu plv and Γ = 0.01 eVk . The fitting para-
meters for the individual amplitudes are fitted to just one
curve and are given by =t 0.0685plu , =t 0.0896plv , and
A = 0.001. All the other curves are calculated with the same
parameters. The agreement between the measured and the
modelled curves is very good. Only some minor deviations
for the dips at 1.75 eV and 1.85 eV around a polarization of
α = − °135 are visible. The rest is modelled very well.

The measured spectra of the square lattice as well as the
rectangular lattice of sample 2 were also modelled, which is
plotted in figures 64 and 65, respectively. With the fitting
parameters =t 0.0784plu , =t 0.1169plv , and A = 0.0022, the
spectra were calculated for all polarization angles. A very
good agreement between the measured and the calculated
curves is achieved for both the square as well as the rectan-
gular lattice. Especially the spectra with the rectangular lattice
are interesting since specific resonances disappear for distinct
polarizations. As already mentioned above, the waveguide
modes initially expected to disappear, namely the TE mode
propagating in x direction and the TM mode propagating in y
direction for α = °0 or the TM mode propagating in x
direction and the TE mode propagating in y direction for
α = − °90 , are still present for the corresponding polarization.
This is true for both the measured and the modelled spectra.
As it was explained for the theoretical model, this is due to the
waveguide modes excited by the particle plasmons. In these
spectra, the peak height behaviour of the waveguide modes is
also predicted quite well, which means that the waveguide

modes disappear for the same polarizations in the measure-
ments and the model. This is due to the parameters Cu andCv,
which are related to the extinction cross-section for the cor-
responding particle plasmon. A detailed study of this peak
height behaviour is carried out in section 5.4.

The measured spectra of sample 3 were also compared to
the calculated ones, which is shown in figure 66. Here, the
transmission amplitude and phase of the directly transmitted
wave, the particle plasmon phases, as well as the individual
spectral widths are the same as for sample 2. The particle
plasmon energies are changed to =E 1.774 eVplu and

=E 1.563 eVplv due to the different particle shape. Again, the
amplitudes tplu, tplv, and A were fitted to only one measured
spectrum. All red curves in figure 66 were calculated with the
same fitting parameters, namely with =t 0.0999plu ,

=t 0.1125plv , and A=0.0029. The agreement between the
measured and the modelled curves is good for all polariza-
tions. The peak height behaviour is again well described. As
already mentioned above, this is due to the parameters Cu and
Cv, which are related to the extinction cross-sections of the
particle plasmons, and will be discussed in section 5.4.

5.4. Peak height behaviour

In order to study the peak height behaviour of the different
waveguide mode resonances in conjunction with different
particle eccentricities, different particle sizes, and different
particle rotations, several spectra were simulated by using S-
matrix calculations. The gold particles in the simulations
possess the different shapes given in table 7. For each of the

Figure 66.Measured (black) and modelled (red) extinction spectra of a rectangular lattice with =P 492 nmx and =P 570 nmy . The main axis

diameters of the gold discs are =d 88 nmu and =d 120 nmv with a rotation of γ = °25 around the sample x-axis. The incident polarization
was changed from (a) α = °0 (bottom) to α = − °90 (top) and from (b) α = − °90 (bottom) to α = − °180 (top) in steps of − °6 . Additionally,
spectra at α = − °45 and α = − °135 are displayed. The spectra are shifted upward for clarity.
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two different eccentricities e, two different particle sizes A
were used. Additionally, for the eccentricity e = 0.661 and the
particle size =A 8482 nm2, the rotation angle γ of the gold
particle was changed. The gold discs are arranged in a rec-
tangular lattice with =P 492 nmx and =P 570 nmy . The
simulations were performed for the polarizations α = °0 , °18 ,

°45 , °72 , °90 , °108 , °135 , and °162 . The normalized peak
heights of a TE polarized and a TM polarized wave propa-
gating in y direction for the different polarizations are plotted
in figures 67(a) and (b), respectively. It can be seen that the
minimum peak height for a TE polarized wave in y direction
is at slightly higher polarizations for an eccentricity e = 0.378
when compared to the peak heights with e = 0.661. For a TM
polarized wave in y direction, the minimum peak height of the
sample with rotation angle γ = °60 is shifted to higher
polarizations.

As already mentioned in section 5.3, the valuesCu andCv

are related to the extinction cross-section at the corresponding
particle plasmon resonance energy. In order to verify this
assumption, the minimum values of CTE, add

2 (see

equation (73)) andCTM, add
2 (see equation (74)) withCu andCv

as the extinction cross-sections at the resonance position are
compared to the minimum values of the peak heights of
figure 67. The polarizations of these minimum values are
obtained by fitting a sin2 function to the corresponding
curves. These polarizations as well as the predicted ones for
the different shapes are given in table 8. The predictions and
the fitted values are quite close, especially for shapes 1–3.
Larger deviations are present for shapes 4 and 5. However,
the order of magnitude is still close. These deviations might
be due to several reasons. First, the energies of the particle
plasmons are close to the waveguide modes, which might
influence the peak height behaviour. The peak heights are
obtained by the difference of the maximum value of the
resonance and the minimum on the higher energy side, which
should give us the real peak heights. However, there might
still be an influence of the particle plasmons. Second, the
extinction is calculated every 2.5 meV for the S-matrix
simulations. It might be possible that the real maximum
position of the resonance is at an energy value between two
calculated ones. Third, the S-matrix calculations are truncated
leading to deviations in the resonance positions as well as the
peak heights. Fourth, the calculation of the extinction cross-
section is based on an approximation. It might be possible that
the real extinction cross-sections vary from the calculated
ones leading to a different position of the minimum peak
height. Therefore, the predictions and the polarizations of the

S-matrix calculated peak height minima agree quite well. This
indicates that the values Cu and Cv are really related to the
extinction cross-section at the corresponding particle plasmon
resonance energy. All calculated spectra of section 5.3 are
making use of this ratio between the two extinction cross-
sections.

5.5. Angular extinction spectra

Samples 1 and 2 were also measured for different angles of
incidence ϑ. The first measurements of sample 1 shown in
figure 68 were performed for ϑ = °0 (black curves) as well as
for ϑ = °3.5 with the azimuthal angle φ = °90 and s-polar-
ized light (α = °0 ). The spectra were measured for both a
Penrose tiling and a square lattice, which are shown in
figures 68(a) and (b), respectively. The azimuthal angle
φ = °90 in the angle-dependent spectra means that the waves
propagating in x and in −x direction possess the same energy,
whereas the energy of the waves propagating in y and in −y
direction is different. Since only a TM wave is propagating in
x direction and only a TE wave in y direction for the square
lattice with α = °0 , only a splitting of the TE polarized wave
(resonance at about1.47 eV) is visible in figure 68(b). The TE
and TM waves propagating in diagonal direction also show a
splitting (see resonances above 1.9 eV). For the Penrose til-
ing, however, all of the four waveguide mode resonances split
up into several modes due to the ten-fold symmetry in reci-
procal space (compare to figure 60(a)). The resonance at
approximately 1.64 eV for normal incidence is due to TM
polarized waves propagating in directions β = ° ° …0 , 36 , .
For ϑ = °3.5 this resonance splits up into several different
ones, one of them propagating in direction β ≈ °0 . This
means that the waveguide mode with this photon energy is
still present. In the spectrum, one can see that this dip is
indeed at the same energy position. However, TE polarized
modes (resonance at about 1.53 eV) with β ≈ °0 and
β ≈ °180 are not present for ϑ = °3.5 leading to a peak
instead of a dip in the spectrum.

P-polarized (α = − °90 ) spectra of sample 1 with
φ = °90 for incidence angles ϑ = °0 and ϑ = °3.5 were also
measured for the Penrose tiling as well as the square lattice.
These spectra are shown in figure 69. The particle plasmon
for this polarization is shifted to lower energies due to the
longer main axis diameter of the elliptical gold particles. By
comparing the two different incidence angles for the square
lattice (figure 69(b)), it is clearly visible that the TE polarized
waveguide mode stays at the same photon energy (about
1.47 eV), whereas the TM polarized mode splits up into two
modes. This can be easily understood by the fact that only a
TE mode is propagating in x direction and a TM mode in y
direction. As above for α = °0 , both waveguide modes pro-
pagating in diagonal directions split up into two modes. For
normal incidence on the Penrose tiling, the TM polarized
waveguide mode propagating in directions β = ° ° …0 , 36 ,
(photon energy of about 1.64 eV) is almost at a peak position
for α = − °90 instead of a dip position for α = °0 . This is due
to the fact that the particle plasmon is shifted to lower ener-
gies leading to a less coupled waveguide mode to the particle

Table 7. Particle parameters for the different S-matrix calculated
spectra.

Shape du (nm) dv (nm) e A (nm2) γ(deg)

1 87.5 94.5 0.378 6494 30
2 100 108 0.378 8482 30
3 78.75 105 0.661 6494 30
4 90 120 0.661 8482 30
5 90 120 0.661 8482 60
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plasmon. For ϑ = °3.5 a dip can be obtained at the same
energy position indicating that no TM polarized wave is
propagating in directions β ≈ °0 and β ≈ °180 . For a TE
polarized wave in direction β = ° ° …0 , 36 , , the dip at about
1.53 eV for normal incidence stays approximately at the same
energy position indicating that the waveguide mode in ±x
direction is the dominant effect. However, a splitting is visible
for this resonance as well.

Sample 2 was also measured for oblique light incidence.
The first spectra are shown for the square lattice with s-
polarized light (figure 70) as well as with p-polarized light
(figure 71). The angle of incidence is changed between °0
(bottom) and °6 (top). The azimuthal angle is kept constant at
φ = °0 in figures 70(a) and 71(a). For figures 70(b) and 71(b),
the azimuthal angle is changed to φ = °90 . The energy
position of the plain normal incidence waveguide modes is
indicated by the vertical red dashed lines in all panels. The

behaviour of the s-polarized (p-polarized) spectra is similar
for both azimuthal angles. This is reasonable since the peri-
odicity is equal in x and y direction meaning that it should not
be possible to distinguish between the s-polarized (p-polar-
ized) data for φ = °0 and φ = °90 . However, due to the
elliptically shaped gold discs, the spectra are still slightly
different. Nevertheless, the principle behaviour is still com-
parable. The TE polarized waveguide mode (≈1.47 eV) pro-
pagating in directions β = °0 or β = °90 splits up into two
main peaks for oblique incidence, whereas the TM polarized
waveguide mode (≈1.57eV) stays almost constant. This
behaviour is expected. However, a small fraction of the TE
polarized mode stays at ≈1.47 eV and a small fraction of the
TM polarized mode splits up into two modes. This can
especially be seen for the TM waveguide mode at ≈1.57 eV
in the s-polarized spectra. While the main peak stays at this
energy, an additional resonance is observable on the higher
energy side moving to higher energies as the angle of inci-
dence increases. This can only be explained by the elliptical,
rotated particles and will be discussed in section 5.6.

For the p-polarized spectra, the behaviour is opposite,
meaning that the TE polarized waveguide mode stays
approximately constant for oblique light incidence and the
TM polarized waveguide mode splits up into two modes as
expected. However, a small part of the TE polarized wave
splits up into two additional modes and a small part of the TM
polarized wave stays at approximately the same photon
energy. Again, this is due to the elliptical, rotated particles
and will be discussed in section 5.6.

Figure 67. Behaviour of the peak heights of the different S-matrix spectra with the specifications given in table 7 versus the incident
polarization α. The peak heights are compared for (a) a TE polarized wave propagating in y direction as well as for (b) a TM polarized wave
propagating in y direction.

Table 8. Polarizations αmin of the minimum peak heights of a TE as
well as a TM wave propagating in y direction obtained from the S-
matrix spectra as well as the predicted ones for the different particle
shapes.

1 2 3 4 5

TEy S-matrix °83.2 °83.3 °64.1 °57.6 °70.1
predicted °81.2 °85.4 °64.0 °68.8 °75.0

TMy S-matrix °13.5 °5.2 °15.6 °19.3 °36.1
predicted °7.5 °4.2 °17.3 °15.0 °21.2
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Both the TE and the TM polarized waves propagating in
the diagonal directions split up into two modes for s- as well
as for p-polarization. The situation changes for φ = °45
where either the TE polarized waveguide mode (p-polariza-
tion) or the TM polarized waveguide mode (s-polarization)
stays approximately constant. In this case, the TE as well as
the TM polarized waveguide modes split up into two modes.
However, it is not possible to measure this with the current
setup.

Next, the rectangular lattice of sample 2 was measured
in s- and p-polarization, which is shown in figures 72 and
73, respectively. As above for the square lattice, the angle of

incidence was changed between ϑ = °0 (bottom) and ϑ = °6
(top) in steps of °1 . Panel (a) shows in both figures the
spectra for an azimuthal angle φ = °0 and panel (b) the
spectra for φ = °90 . The energy positions of the plain
waveguide mode resonances are indicated by the red dashed
lines. For φ = °0 , the TE and TM polarized waveguide
modes propagating in y direction stay at an approximately
constant energy while the TE and TM polarized waveguide
modes propagating in x direction split up into two modes.
This is true for both s- and p-polarization (figures 72(a) and
73(a)) and can be easily understood by the fact that the
absolute values of the modes in ±y direction are equal

Figure 68. S-polarized extinction spectra of (a) a Penrose tiling as well as (b) a square lattice for incidence angles ϑ = °0 (black) and ϑ = °3.5
(red) and an azimuthal angle φ = °90 .

Figure 69. P-polarized extinction spectra of (a) a Penrose tiling as well as (b) a square lattice for incidence angles ϑ = °0 (black) and ϑ = °3.5
(red) and an azimuthal angle φ = °90 .
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whereas those of the modes in ±x are not. However, the TM
polarized waveguide mode in y direction is more pro-
nounced for s-polarization and the TE polarized waveguide
mode in y direction for p-polarization. For circularly shaped

particles it is expected that the less pronounced resonances
cannot be excited at all. Due to the elliptical, rotated parti-
cles, a small fraction of these modes is still able to propagate
in y direction.

Figure 70. S-polarized extinction spectra of a square lattice for (a) φ = °0 as well as for (b) φ = °90 . The angle of incidence is changed
between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for clarity.

Figure 71. P-polarized extinction spectra of a square lattice for (a) φ = °0 as well as for (b) φ = °90 . The angle of incidence is changed
between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for clarity.
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For φ = °90 , the waveguide modes propagating in y
direction split up into two modes and those in x direction
stay at an almost constant energy position. The TM polar-
ized waveguide mode in x direction is more pronounced for

s-polarization and the TE mode in x direction for p-polar-
ization. Similar considerations as for φ = °0 can be made
here in order to explain the occurrence of the specific
resonances.

Figure 72. S-polarized extinction spectra of a rectangular lattice for (a) φ = °0 as well as for (b) φ = °90 . The angle of incidence is changed
between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for clarity.

Figure 73. P-polarized extinction spectra of a rectangular lattice for (a) φ = °0 as well as for (b) φ = °90 . The angle of incidence is changed
between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for clarity.
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The s-polarized spectra have in common that the more
pronounced TE wave splits up into two modes and the more
pronounced TM wave stays at approximately the same photon
energy (figure 72). This is in agreement with the behaviour of

the s-polarized spectra of the square lattice. In contrast, the
more pronounced TE wave in the p-polarized spectra stays at
about the same energy position, whereas the more pro-
nounced TM polarized wave splits up into two modes. Also

Figure 74. S-polarized extinction spectra of a Penrose tiling for (a) φ = °0 as well as for (b) φ = °90 . The angle of incidence is changed
between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for clarity.

Figure 75. P-polarized extinction spectra of a Penrose tiling for (a) φ = °0 as well as for (b) φ = °90 . The angle of incidence is changed
between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for clarity.

59

J. Opt. 16 (2014) 114001 C Bauer and H Giessen



this behaviour is consistent with the findings of the p-polar-
ized spectra of the square lattice.

The last angle-dependent measurements of sample 2 were
performed for the Penrose tiling. As above, s-polarized
(figure 74) as well as p-polarized (figure 75) spectra were
measured with the azimuthal angle to be either φ = °0 (panels
(a)) or φ = °90 (panels (b)). The energy positions of the plain
normal incidence waveguide modes are again shown by the
red dashed lines. As the Penrose tiling possesses ten-fold
symmetry in reciprocal space (see figure 60(a)), each wave-
guide mode splits up in up to ten modes for oblique light
incidence. For normal incidence, the absolute value of the
propagation constants in directions β = ° ° …0 , 36 , is equal
for each β. The same is true for β = ° ° …18 , 54 , , however,
with a slightly higher propagation constant when compared to
directions β = ° ° …0 , 36 , . For oblique light incidence, the
waves propagating in directions β = ° ° …0 , 36 ,
β = ° ° …( 18 , 54 , ) do not possess the same absolute value
of the propagation constant. An azimuthal angle φ = °0
generates a mirror symmetric behaviour of the waveguide
modes with respect to the x-axis leading to six different
propagation constants for β = ° ° …0 , 36 , and five different
propagation constants for β = ° ° …18 , 54 , . The mirror
symmetric behaviour of the waveguide modes for φ = °90 is
given with respect to the y-axis. For this azimuthal angle, the
waveguide modes propagating in directions β = ° ° …0 , 36 ,
split up into five modes and those in directions
β = ° ° …18 , 54 , into six modes. These waveguide modes
are more or less pronounced, namely a polarization α = °0
results in a maximum value of a TM wave propagating in ±x
direction as well as a maximum value of a TE wave propa-
gating in ±y direction. The opposite is true for α = °90 . This
means that the major waveguide mode resonance having
about the same energy when compared to the normal inci-
dence spectrum is present for a TM wave propagating in
direction β = ± °90 for s-polarization with φ = °0 (1.87 eV,
figure 74(a)) as well as for a TM wave propagating in
direction β = ± °0 for s-polarization with φ = °90 (1.64 eV,
figure 74(b)). For p-polarization, the major waveguide modes
keeping the resonance energy almost constant are the TE
wave propagating in direction β = ± °90 for φ = °0
(1.75 eV, figure 75(a)) and the TE wave propagating in
direction β = ± °0 for φ = °90 (1.53 eV, figure 75(b)).
However, also some minor resonances with higher or lower
energies are present in the system. They are simply much less
pronounced and, thus, less visible. The TE waves (TM waves)
show the opposite behaviour for s-polarization (p-
polarization).

5.6. 2D theoretical model for oblique light incidence

The theoretical model described in section 5.3 was developed
for normal incidence. However, in order to model the spectra
for oblique light incidence, this model has to be expanded,
which is described in this section.

The first step is again the description of the spatial
arrangement by Dirac delta functions and the subsequent 2D
Fourier transform. This 2D Fourier transform can be

calculated with the help of the projection slice theorem
[145, 146]. The individual slices in direction β are given by

β ξS k( ) of equation (64). As it was already described in
section 2.1.2, the propagation constants βp are given by

β = +k g, (80)p xy

with ϑ= =kk k| | sinxy xy 0 being the wave vector component
parallel to the sample surface (see figure 76(a)) and g being
the location of the Fourier components in reciprocal space.
This relation was already given in equation (28). For normal
light incidence, kxy is equal to zero meaning that the propa-
gation constants of the waveguide modes are just given by the
k vectors of the Fourier peaks. For oblique light incidence,
however, kxy is not equal to zero leading to the vector addi-
tion given in equation (80). This means that the propagation
constants for oblique light incidence (filled circles) can be
obtained by shifting the Fourier transform (open circles) by
kxy, which is displayed in figure 76(b). The absolute value of
the propagation constants for an angle of incidence ϑ and an
azimuthal angle φ is given by [150]

β ϑ ϑ φ β= + + −( ) ( ) ( )k g k gsin 2 sin cos ,

(81)

p 0
2 2 2

0 FT

with k0 as the absolute value of the incident wave vector and g
as the Fourier component with distance g to the centre of the
Fourier transform. The directions of the individual Fourier
components are denoted by the angle βFT.

Since each Fourier component as well as each compo-
nent kxy is dependent on the energy of the incident light
with polar angle ϑ, the vector kxy is different for each
Fourier component. Therefore, the TE and TM dispersion
relations of equations (24) and (25) are needed, which are
plotted as black solid and red dashed curves in figure 76(c),
respectively. The energies and the corresponding kxy values
are obtained by the intersections of a straight line with

ϑ= k E c( ) · sinxy and the folded dispersion curves. These
kxy values can be utilized to find the location of the angular
propagation constants by using equation (80). The vectors
from the centre of the Fourier transform that are pointing to
the angular propagation constants define the directions in
which the waveguide modes are propagating. The angle β
defines the angle between the direction of the angular pro-
pagation constant and the sample x-axis. Due to the fact that
the TE and TM dispersion relations are different, the TE
waves do not propagate in the same directions as the TM
waves for the same Fourier component. However, the
Fourier transform in figure 76 is shifted by a constant kxy

component for all TE and TM propagation constants. In this
picture, the TE and TM wave are propagating in the same β
direction. This is easier to explain since we do not have to
distinguish between the TE and the TM direction. However,
we have to keep in mind that the TE and TM directions are
different for the real calculations.

The polarization αE of the incident light is defined to
have the αE , xy component rotated by the angle α around the
sample x-axis (see figure 76(d)). When light with this
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polarization is incident on the sample, αE has to be split into a
TE as well as a TM wave propagating in direction β (see
figure 76(d)). This leads to the components [150]

α β= ± − +α αC C Csin ( ) , (82)TE , xy
2 2

, z
2

α β= −αC C cos ( ), (83)TM ,xy

where αC ,xy and αC ,z are defined by

ϑ φ α
ϑ=

− −
α

α

( )
C

C

1 sin ( ) sin
cos ( ), (84),xy

2 2

ϑ φ α
ϑ φ α= −

− −
−α

α

( ) ( )
C

C

1 sin sin
sin ( ) cos ( ).

(85)

,z
2 2

The + sign in equation (82) is used when α β° ⩽ − < °0 180

Figure 76. (a) k-vector incident on the sample for an angle of incidence ϑ and an azimuthal angle φ. (b) The Fourier transform (open circles)
is shifted by kxy in order to obtain the propagation constants for oblique light incidence (filled circles). (c) Dispersion relations of a TE (black

solid) and a TM polarized (red dashed) waveguide mode as well as those of vacuum (green short-dashed) and quartz (blue dash-dotted) for a
180 nm thick HfO2 waveguide on quartz. (d) TE and TM waves propagating in direction β with ETE and ETM as the vector addition of the
incident polarization αE . (e) The incident polarization excites particle plasmons along the main axes of an elliptical metal particle. (f) Each
particle plasmon can excite a TE as well as a TM polarized wave in direction β. Reproduced from [150] and modified with permission.
Copyright 2012 by Nature Publishing Group.
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and the ‘−’ sign is used when α β° ⩽ − < °180 360 . The
factor αC in equations (84) and (85) is dependent on the
incident light with polar angle ϑ and azimuthal angle φ. Since

αE , z is always normal to the direction of propagation, only
CTE is dependent on αC z.

It has been mentioned above that for a square lattice or a
rectangular lattice with φ = °0 and s-polarization no TM
wave is expected to propagate in the ±x direction. However,
in figure 70(a) as well as in figure 72(a) a small resonance is
visible for a TM polarized wave propagating in x direction.
This resonance is split into two for oblique light incidence. As
has already been explained in section 5.3, this is due to the
elliptically shaped particles that are rotated by the angle γ
around the sample x-axis.

Incident light with polarization αE can excite particle
plasmons in such metallic particles, but only along the prin-
cipal axes u, v, and z. The componentsCplu,Cplv, andCplz (see
figure 76(e)) are given by [150]

α γ= −α ( )C C C cos , (86)plu ,xy u

α γ= −α ( )C C C sin , (87)plv ,xy v

= αC C C , (88)plz ,z z

with Cu, Cv, and Cz as factors dependent on the eccentricity
and size of the metal particles. Each of these excited particle
plasmons can be regarded as polarized light that is incident on
the sample. As it was explained above for polarized light
incident on the sample, each particle plasmon can excite a TE
as well as a TM wave propagating in direction β (see figure 76
(f)). This leads to the following components [150]

β γ= − −( )C C sin , (89)TEu plu

β γ= −( )C C cos , (90)TEv plv

=C C , (91)TEz plz

β γ= −( )C C cos , (92)TMu plu

β γ= −( )C C sin . (93)TMv plv

The ‘–’ sign in equation (89) is needed since ETEu points in
the opposite direction than the other TE components. Note
that the electric field vector in z direction can only excite a TE
polarized wave as already mentioned above.

The overall components CTE, add for a TE as well as
CTM, add for a TM wave are obtained by the addition of the
individual components (equations (82), (89), (90), and (91)
for TE polarized waves as well as equations (83), (92), and
(93) for TM polarized waves) [150]

= + + +C C C C C , (94)TE, add TE TEu TEv TEz

= + +C C C C . (95)TM, add TM TMu TMv

As has been explained for normal incidence, β ξS k( ) in
direction β has to be weighted with the square value of either
CTE, add or CTM, add. However, this is not the initial slice of the
Fourier transform but the slice through the centre of the
reciprocal space and the shifted Fourier peak. The total

intensity is then obtained by integrating over all directions β
leading to

∫ β=
°

°
β ξ( )F S k C d , (96)tot, TE

0

360

TE, add
2

∫ β=
°

°
β ξ( )F S k C d , (97)tot, TM

0

360

TM, add
2

with the positive ξk -axis of β ξS k( ) for β° ⩽ < °0 180 and the
negative one for β° ⩽ < °180 360 .

The rest of this model is equal to the normal incidence
model in section 5.3. As it has been explained there, the
transmission and reflection amplitudes are obtained by using
equations (77) and (78) with the phase of the waveguide
mode given by equation (79). The transmittance and reflec-
tance spectra can be calculated by using =T t| | 2 and

=R r| | ,2 respectively. The extinction spectrum is given by
= − TExt ln ( ).
For the samples measured with oblique angle of inci-

dence (see spectra in section 5.5), the individual spectra are
calculated by using the just described model. The measured
(black) and modelled (red) spectra of sample 1 in s- and p-
polarization are shown in figures 77 and 78, respectively.
Panels (a) of both figures depict the spectra of the Penrose
tiling and panels (b) those of the square lattice. The angle of
incidence was changed between ϑ = °0 (bottom) and
ϑ = °3.5 (top) for an azimuthal angle of φ = °90 . The fitting
parameters =t 0.1434plu , =t 0.1580plv , and A = 0.0084 were
used for calculating all spectra. These parameters were
obtained by fitting the curve to just one spectrum. The
agreement between the measured and the modelled spectra is
especially good for the Penrose tiling. The four waveguide
mode resonances for normal incidence split up into several
peaks for oblique light incidence. This behaviour is different
for s- and p-polarization. The difference has already been
explained for the spectra in figures 68 and 69. Exactly this
different behaviour is described very well in our model. The
location of the resonances in the modelled spectra coincides
with those of the measured ones. This behaviour can be seen
in figure 77(a) for s-polarized light (φ = °90 and α = °0 ) as
well as in figure 78(a) for p-polarized light (φ = °90 and
α = − °90 ). The location of the resonances for the square
lattice is also predicted quite well by our model (see
figures 77(b) and 78(b)). As it has been already explained in
figure 68 for s-polarization, the TE polarized waveguide
mode splits up into two modes for oblique light incidence,
whereas the TM polarized mode stays at about the same
energy. This behaviour can be seen for both measured and
modelled spectra (see figure 77(b)). The opposite behaviour
can be obtained for p-polarization, namely the TE polarized
resonance stays at a constant energy and the TM polarized
resonance splits up into two modes. Again, this is visible for
the measured as well as the modelled spectrum (figure 78(b)).
Also the splitting of the waveguide modes propagating in
diagonal direction is well predicted in the modelled spectra.
However, deviations are visible for the waveguide mode
resonances within the plasmon resonance. These deviations
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can also be obtained for normal incidence. The reason of the
appearance of these deviations is unknown.

The spectra of sample 2 were also modelled using the
theoretical model described above in this section. First, this is
shown for s- as well as p-polarized spectra of the square
lattice in figures 79 and 80, respectively. The angle of inci-
dence is changed between ϑ = °0 (bottom) and ϑ = °6 (top)
in steps of °1 . The azimuthal angle is φ = °0 in panels (a) and
φ = °90 in panels (b). The fitting parameters =t 0.0784plu ,

=t 0.1169plv , and A = 0.0022 were fitted to only one curve
and were used for all other spectra.

It can be nicely seen that the TE polarized waveguide
mode (1.47eV) splits up into two modes, whereas the TM
polarized waveguide mode (1.57 eV) stays at approximately

constant energies for s-polarization (see figure 79). However,
also a small fraction of the TE polarized mode stays at about
1.47 eV and a small part of the TM polarized mode splits up
into two modes. This behaviour is visible in both the mea-
sured as well as the modelled spectra. This can only be
explained by the elliptically shaped, rotated metal discs. As it
has been explained above for the theoretical model, the
incident polarization can excite the particle plasmons only
along the principal axes. These rotated polarizations can
excite waveguide modes propagating in directions β (see
figure 76(f)). For φ = °0 and α = − °90 (see figure 79(a)), the
TE (TM) polarized waves are propagating in ±x (±y) direc-
tion. Therefore, it is only expected that the TE (TM) wave-
guide mode splits up into two modes (stays at constant

Figure 77. Measured (black) and modelled (red) extinction spectra of (a) a Penrose tiling as well as (b) a square lattice in s-polarization for
incidence angles ϑ = °0 (bottom) and ϑ = °3.5 (top) and an azimuthal angle φ = °90 . The spectra are shifted upward for clarity.

Figure 78. Measured (black) and modelled (red) extinction spectra of (a) a Penrose tiling as well as (b) a square lattice in p-polarization for
incidence angles ϑ = °0 (bottom) and ϑ = °3.5 (top) and an azimuthal angle φ = °90 . The spectra are shifted upward for clarity.
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energies). However, due to the fact that the gold discs are
elliptically shaped and rotated by γ = °40 , the excitation of a
TE (TM) polarized mode propagating in ±y (±x) is possible.
This leads to the small fraction of the TE polarized mode

staying at approximately constant energies as well as to the
small fractions of the TM polarized wave splitting up into two
modes. Similar explanations can be given for the s-polarized
spectra with φ = °90 (see figure 79(b)). However, the waves

Figure 79. Measured (black) and modelled (red) extinction spectra of a square lattice in s-polarization for (a) φ = °0 as well as for (b)
φ = °90 . The angle of incidence is changed between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for
clarity.

Figure 80. Measured (black) and modelled (red) extinction spectra of a square lattice in p-polarization for (a) φ = °0 as well as for (b)
φ = °90 . The angle of incidence is changed between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for
clarity.
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propagating in ±x direction have to be replaced by waves
propagating in ±y direction and vice versa. The behaviour of
the measured spectra is very nicely reproduced by the mod-
elled spectra, which verifies our model.

The p-polarized spectra for φ = °0 and φ = °90 were
also calculated using the same fitting parameters as above.
Also here, a very nice agreement between measured and
modelled curves is achieved. In contrast to s-polarization, the
major TE peak stays at constant energies and the major TM
peak splits up into two modes. However, a minor TE peak
splitting up into two modes as well as a minor TM peak
staying at approximately constant energies can be obtained in
both the measured as well as the modelled spectra. As above
for the s-polarized spectra, this behaviour can only be
explained by the elliptically shaped, rotated metal discs. For
φ = °0 and α = °0 (see figure 80(a)), a TE polarized wave
propagating in ±x direction as well as a TM polarized wave
propagating in ±y can only be explained by the excitation due
to the particle plasmons along the main axes of the rotated
metal discs. The same is true for TE polarized waves pro-
pagating in ±y direction as well as for TM polarized waves
propagating in ±x direction, when φ = °90 and α = − °90
(see figure 80(b)).

This behaviour can especially be seen by looking at the
spectra of a rectangular lattice. Due to the fact that the peri-
odicity in x and y direction is different, also the TE (TM)
polarized waveguide modes appear at different energies in the
spectrum. The measured (black) and modelled (red) curves
are shown in figures 81 and 82 for s- and p-polarization,
respectively. The angle of incidence is changed between
ϑ = °0 (bottom) and ϑ = °6 in steps of °1 . In panel (a) the

azimuthal angle is φ = °0 and in panel (b) φ = °90 . The
fitting parameters for the modelled curves are given by

=t 0.0784plu , =t 0.1169plv , and A=0.0022. As can be seen in
figures 81 and 82, the agreement between the measured and
the modelled curves is also here quite good.

The resonances at about 1.37 eV, 1.47 eV, 1.55 eV, and
1.66 eV are due to TE and TM waves propagating in ±y
direction as well as to TE and TM waves propagating in ±x
direction. For φ = °0 and s-polarization (figure 81(a)), the TE
polarized wave in ±y direction as well as the TM polarized
wave in ±x direction can only be explained by the rotated
metal particles. These resonances are present in both the
measured as well as the modelled spectra. It can be clearly
seen that the waves propagating in ±y direction stay at con-
stant energies, whereas the waves propagating in ±x direction
split up into two modes. This behaviour is very well described
by the modelled curves. For φ = °90 and s-polarization
(figure 81(b)), the TE polarized wave in ±y direction and the
TM polarized wave in ±x direction are more pronounced
when compared to the TM polarized wave in ±y direction and
the TE polarized wave in ±x direction. This time, the waves
propagating in ±y direction split up into two modes, whereas
the waves propagating in ±x direction stay approximately
constant. Also this behaviour is modelled quite well. As
already mentioned above, the two different azimuthal angles
in s-polarization show a splitting of the more pronounced TE
wave, whereas the more pronounced TM wave stays at
approximately constant energies.

For φ = °0 and p-polarization (figure 82(a)), the waves
propagating in ±y direction stay at constant energies and the
waves in ±x split up into two modes as for φ = °0 and s-

Figure 81. Measured (black) and modelled (red) extinction spectra of a rectangular lattice in s-polarization for (a) φ = °0 as well as for (b)
φ = °90 . The angle of incidence is changed between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for
clarity.
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polarization. However, the more pronounced waves for p-
polarization are the TE wave in ±y direction and the TM
wave in ±x direction. As already explained above, the minor
resonances can only be explained by the rotated metal discs.

The waves propagating in ±y direction for φ = °90 and p-
polarization (figure 82(b)) split into two modes and the waves
in ±x direction stay approximately constant. This is different
in comparison to the p-polarized spectra with φ = °0 . It is

Figure 82. Measured (black) and modelled (red) extinction spectra of a rectangular lattice in p-polarization for (a) φ = °0 as well as for (b)
φ = °90 . The angle of incidence is changed between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for
clarity.

Figure 83. Measured (black) and modelled (red) extinction spectra of a Penrose tiling in s-polarization for (a) φ = °0 as well as for (b)
φ = °90 . The angle of incidence is changed between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for
clarity. Reproduced from [150] and modified with permission. Copyright 2012 by Nature Publishing Group.
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also different that the TM polarized wave in ±y direction and
the TE polarized wave in x direction are the more pronounced
resonances. However, the more pronounced TE wave stays at
constant energies, whereas the more pronounced TM wave
splits into two modes. The behaviour of these spectra is
verified by our model meaning that the excitation of the minor
resonances can be explained by the model presented above.

Finally, the angle-dependent spectra of the Penrose tiling
of sample 2 were calculated with the model described above.
The s- and p-polarized spectra are depicted in figures 83 and
84, respectively. The spectra with an azimuthal angle of
φ = °0 are shown in panel (a) and those with φ = °90 are
plotted in panel (b). The angle of incidence is varied in steps
of °1 between ϑ = °0 and ϑ = °6 . The modelled curves (red)
are calculated with the fitting parameters =t 0.0685plu ,

=t 0.0896plv , and A = 0.001 for all spectra. Since the Penrose
tiling possesses ten-fold symmetry in reciprocal space, the
behaviour is more difficult to explain when compared to the
square and the rectangular lattice. However, this has been
done above in section 5.5. We can observe a splitting into five
or six modes of each of the normal incidence waveguide
modes. These resonances are more or less pronounced
depending on the incident azimuthal angle as well as the
incident polarization. Some minor resonances due to the
elliptical particles are also present. However, due to the fact
that one resonance for normal incidence splits into several
modes for oblique light incidence, these additional waveguide
modes are hardly visible in the spectra. Mostly, they are even
located at the same energy positions of the already present
modes leading to a higher resonance peak. However, the

modelled curves (red) calculated with the above presented
model are compared to the measured spectra (black) for both
s- and p-polarization. The agreement between the measured
and the calculated spectra is very good, which verifies our
model. Therefore, quasiperiodic spectra can be modelled by
using this approach.

5.7. Plasmonic solar cells with 2D periodic and quasicrystalline
metal nanostructure patterns

Possible applications of such metallic photonic crystals are
LEDs or solar cells. In either case, the waveguide layer
consists of a semiconductor having a relative high index of
refraction. For LEDs, a forward biased voltage is applied so
that light of a specific energy is emitted. However, the
working principle of solar cells is reversed meaning that light
incident on the semiconductor generates a current. The effi-
ciency of such devices can be enhanced when light is coupled
into or out of the waveguide layer. This can be achieved by
using a grating structure. Since all measurements in this
tutorial are based on light that is incident on the metallic
photonic crystal, we will present here a method for enhancing
the efficiency of solar cells. However, similar structure
designs can be used to increase the efficiency of LEDs.

The sample in this case consists of a silicon dioxide
(SiO2) substrate with a 30 nm thick crystalline silicon (Si)
waveguide layer on top and is shown in figure 85. The
arrangement of the circular gold discs with a diameter d of
100 nm and a height of 50 nm is either quasiperiodic or
periodic. Since the particle plasmon resonance is strongly

Figure 84. Measured (black) and modelled (red) extinction spectra of a Penrose tiling in p-polarization for (a) φ = °0 as well as for (b)
φ = °90 . The angle of incidence is changed between ϑ = °0 (bottom) and ϑ = °6 (top) in steps of °1 . The spectra are shifted upward for
clarity. Reproduced from [150] and modified with permission. Copyright 2012 by Nature Publishing Group.
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damped when a metal is directly placed on an absorbing
semiconductor [151], a passivation layer between the Si layer
and the gold discs is introduced. This passivation layer con-
sists of a 30 nm thick SiO2 layer. Another effect of this
additional SiO2 layer is that the sample structure is more
symmetric leading to a lower cutoff energy of the waves that
can be guided in the Si layer [110]. In the quasiperiodic tiling
the metal particles are placed on the vertices of a Penrose
tiling with an edge length =P 425 nm (see figure 85(c)). The
period of the square lattice is also =P 425 nm (see
figure 85(d)).

In order to predict the absorption enhancement of such a
plasmonic solar cell, the normal incidence transmittance and
reflectance spectra of the periodic structure is calculated by
using S-matrix simulations. This is necessary since reasonable
fitting parameters are needed for the model presented in
section 5.6. These S-matrix calculated transmittance and
reflectance spectra are shown as black solid lines in
figures 86(a) and (b), respectively. The transmittance

=T t( | | )2 and reflectance ( =R r| | 2) curves of our Fano
model fitted by using the transmission and reflection ampli-
tudes t and r of equations (77) and (78) are plotted as red
dashed curves in figures 86(a) and (b). The direct transmis-
sion and reflection coefficients td and rd are fitted to the
transmittance and reflectance spectra of the structure without
the plasmonic discs and are given by

= − + −t E E E1.3370 0.8147 0.3420 0.0575 , (98)d
2 3

= + − +r E E E0.0325 0.7545 0.2046 0.0053 . (99)d
2 3

The phases of the directly transmitted and reflected waves are

Figure 85. Solar cell design with (a) a 2D quasiperiodic arrangement and (b) a 2D periodic arrangement of gold discs on top of a 30 nm thick
SiO2 spacer layer, a 30 nm thick Si waveguide layer, and a SiO2 substrate. The gold discs with diameter d are arranged (c) on the vertices of a
Penrose tiling with an edge length P and (d) in a periodic fashion with a periodicity P.

Figure 86. S-matrix calculated (a) transmittance and (b) reflectance
spectra (black solid lines) as well as the corresponding Fano
modelled spectra (red dashed lines) for a periodic gold disc
arrangement. Reproduced from [152] and modified with permission.
Copyright 2013 by the Optical Society of America.
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set to be ϕ π= 0.269t and ϕ π= 0.864r , respectively. As
already mentioned in section 5.3, the two particle plasmon
terms of equations (77) and (78) combine to only one term
given by Γ Γ− +ϕt E Ee ( i )pl pl

i
pl plpl and

Γ Γ− +ϕr E Ee ( i )pl pl
i

pl plpl , respectively. For the energy, the
phase, and the spectral width of this particle plasmon reso-
nance, the values =E 2.0722 eVpl , ϕ π= 2pl , and
Γ = 0.1081 eVpl are used. The different waveguide modes in
the energy range E possess the spectral widths Γ = 0.01 eVk .
Their amplitudes Ak are calculated with the approach pre-
sented in section 5.6 and the corresponding energies Ek are
obtained by using the waveguide mode dispersion relations of
the structure. The phases of the waveguide modes ϕk are
calculated with equation (79) as well as with the phases of the
undisturbed reflected and transmitted waveguide modes
ϕ π=∞ 0.4104t, and ϕ π=∞ 0.7096r, , respectively. The fit-
ting parameters for the correct ratio between the particle
plasmon and the waveguide modes are given by =t 0.1512pl ,

=r 0.1668pl , and A=0.01025. It can be seen in figure 86(a)
and (b) that the agreement between the S-matrix spectra
(black solid) and the Fano model (red dashed) is good. Only
above an energy value of about 2.2 eV, the waveguide modes
in the Fano model are much more pronounced when com-
pared to the S-matrix calculations. This is due to an increased
absorption coefficient of the Si layer above this value, which
is neglected in the Fano model. Due to the strong damping,
the waveguide modes above 2.2eV cannot be excited.
Therefore, only the energy region below this value is con-
sidered. Since an electron-hole pair can only be excited above
the band gap energy =E 1.12 eVg [153], only higher energy
values are used. In the following, all spectra are restricted to
the energy region between 1.12 eV and 2.2 eV.

For solar cells, it is important to know how much light
can be absorbed. Therefore, the absorbance A is calculated
with = − −A T R1 . The transmittance T and the reflectance
R are calculated for the square lattice as well as for the
Penrose tiling by using the above mentioned parameters. It is
assumed that an electron-hole pair is created for each absor-
bed photon in the Si layer [154]. However, part of the light is
also absorbed by the metal particles, which reduces the
amount of absorbed light in the semiconductor. Thus, the
calculated absorbance is higher than the part that is only
absorbed by the Si layer, which is in the energy region of the
excited particle plasmon. However, it is expected that the
amount of light absorbed in the gold discs is independent of
the structural arrangement leading to the same absorbed
fraction for the Penrose tiling and the square lattice. Fur-
thermore, the light that is coupled into the waveguide slab is
only absorbed by the material in this layer.

The azimuthal angle as well as the polar angle incident
on the solar cell are different for various local times and days.
Therefore, it is important to have a look at the p- and s-
polarized absorbance spectra with changing azimuthal angles
for a specific angle of incidence. The p-polarized absorbance
spectra of a Penrose tiling and a square lattice are plotted as
colour-coded images for ϑ = °6 in figures 87(a) and (b),
respectively. The azimuthal angle is changed in these plots

between φ = °0 and φ = °90 . The s-polarized quasiperiodic
and periodic spectra are shown in figures 87(c) and (d). By
comparing the colour-coded spectra of the Penrose tiling to
the corresponding ones of the square lattice, one notices that
the absorbance maxima of the quasiperiodic lattice stay
almost at the same energy position, whereas the maxima of
the periodic lattice are very sensitive to the incident azimuthal
angle. This means that the quasiperiodic structure is much less
polarization dependent due to the higher rotational symmetry.
Thus, it is expected that only in the quasicrystalline case the
absorbance is almost identical for any incident azimuthal
angle, which is desirable.

Next, the angle dependent spectra are observed. The
colour code images for the quasiperiodic as well as the per-
iodic arrangement in p-polarization are shown in figures 88(a)
and (b), those in s-polarization are plotted in figures 88(c) and
(d). The right hand side in each panel belongs to an angle of
incidence variation for φ = °0 , whereas the left hand side
stems from an angle of incidence variation for φ = °18 in the
qausicrystalline case and for φ = °45 in the periodic case.
Normal incidence is indicated by Γ and the (pseudo-)Brillouin
zone edge for φ = °0 is given by X. N and M describe the
pseudo-Brillouin zone edge for the Penrose tiling with
φ = °18 as well as the Brillouin zone edge for the square
lattice with φ = °45 . For the quasicrystalline arrangement
much more waveguide modes can be observed in comparison
to the periodic lattice meaning that more different energies of
the incident photons can be absorbed. Furthermore, the left
part in each panel resembles the right part much better in the
quasiperiodic case.

Due to the fact that the polar and azimuthal angles
incident on a solar cell change significantly, the efficiency
should be almost constant for different ϑ and φ. Therefore, it
is crucial to calculate the average absorption Aavg, which is
given by [155]

∫ λ λ λ=
λ

λ
A A S( ) ( ) d . (100)avg tot

min

g

The wavelengths λmin and λg in this equation are defined by
λ = E1240min max and λ = E1240g g with the above men-
tioned energy values =E 2.2 eVmax and =E 1.12 eVg . The
total absorption Atot is the arithmetic mean of the p- and the s-
polarized absorbance spectra −Ap pol and −As pol

λ
λ λ

=
+− −

A
A A

( )
( ) ( )

2
. (101)tot

p pol s pol

λS ( ) in equation (100) is the direct solar and circumsolar
spectrum. It is dependent on the air mass the sunlight is
propagating through. Therefore, λS ( ) changes for different
zenith angles meaning that it also varies for different incident
angles ϑ in combination with different azimuthal angles φ. In
order to calculate the different air mass irradiance spectra, the
Simple Model for the Atmospheric Radiative Transfer of
Sunshine (SMARTS2) [156] is used. The average absorption
of the enhanced structure Aavg, enh can be normalized to that of
the bare structure Aavg, Bare, which gives the enhancement

69

J. Opt. 16 (2014) 114001 C Bauer and H Giessen



factor EF [157]

=EF
A

A
. (102)

avg, enh

avg, Bare

In the enhanced structure, the metal particles are either

arranged in a quasiperiodic (Aavg, Penrose) or in a periodic
fashion (Aavg, Square).

In order to see how the enhancement factor changes
during the day as well as over the year, EF is plotted versus
these two parameters in figure 89(a) for the Penrose tiling and
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Figure 87. Polarization dependent absorbance spectra for p-polarized light of (a) a Penrose tiling and (b) a square lattice as well as for s-
polarized light of (c) a Penrose tiling and (d) a square lattice. The angle of incidence is ϑ = °6 and the azimuthal angle φ is changed between
°0 and °90 . Reproduced from [152] and modified with permission. Copyright 2013 by the Optical Society of America.
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Figure 88. Angle dependent absorbance spectra for p-polarized light of (a) a Penrose tiling and (b) a square lattice as well as for s-polarized
light of (c) a Penrose tiling and (d) a square lattice. The part from Γ to N belongs to an azimuthal angle of °18 and the part from Γ to M
belongs to φ = °45 . The part from Γ to X belongs to an azimuthal angle of °0 . Reproduced from [152] and modified with permission.
Copyright 2013 by the Optical Society of America.
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in figure 89(c) for the square lattice. For these colour-coded
plots, an average latitude and longitude of Germany ( °51 N,
°9 E [158]), an average roof pitch of °35 [159], and a solar
cell directing to the south are assumed. In order to visualize
how the polar and azimuthal angles change for different local
times and days of the year, the course of the sun is shown for
three different days in the inset of figure 89(d). The sun rises
always in the back of this figure and sets in the front. The
highest course of the sun belongs to a summer day, the middle
one to a spring/autumn day, and the lowest one to a winter
day. The sun is always shown for noon.

It can be seen in figures 89(a) and (c) that the enhance-
ment factor for the quasiperiodic arrangement is more con-
stant when compared to the periodic arrangement. Especially
for noon the enhancement factor of the Penrose tiling stays
almost constant throughout the whole year. In contrast, the
enhancement factor of the structure with the square lattice is
lower during wintertime and higher during summertime. In
order to analyse this behaviour better, the enhancement fac-
tors for 8:00 a.m., 10:30 a.m., 12:30 p.m., 2:30 p.m., and 5:00
p.m. are plotted versus the day of the year in figures 89(b) and
(d) for the quasiperiodic and the periodic tiling, respectively.
The cross-sections with the corresponding colours in dark
green, black, blue, light green, and cyan are also indicated in
figures 89(a) and (c).

For local times at 10:30 a.m. and 2:30 p.m. both the
Penrose tiling and the square lattice show enhancement fac-
tors of about 15 in winter and around 16 in summer. How-
ever, the structure with the quasiperiodic gold disc

arrangement reaches almost constant values between 15.8 and
16.2 between the beginning of March and the mid of October,
whereas the structure with the periodic lattice achieves the
same values only between the beginning of April and the mid
of September. A similar behaviour can be obtained by looking
at the curve for a local time around noon in the quasicrys-
talline case. However, the enhancement factor is slightly
bigger during wintertime and the constant values between
15.8 and 16.2 are even reached between the mid of February
and the end of October. In contrast, for a local time around
noon in the periodic case, the enhancement factor is reduced
in winter to a value of about 14.7 and increased in summer to
a value of about 16.6. Between the mid of April and the end
of August, the enhancement factor has values of above 16.4.
However, from the end of October until the beginning of
March, values of only about 15 are reached. Enhancement
factors between 15.8 and 16.2 are only achieved from the mid
of March until the beginning of April as well as from the mid
of September until the beginning of October. Thus, the
enhancement factor in the quasicrystalline case stays a quite
long period of the year at almost constant values between 15.8
and 16.2 for local times between 10:30 a.m. and 2:30 p.m.,
whereas the enhancement factor deviates from these values
for several weeks in the periodic case.

Since it is desirable to reach quite high values in the
morning and evening hours due to a higher energy consump-
tion for these times, the enhancement factors for 8:00 a.m. and
5:00 p.m. are also regarded. Although the enhancement factors
are reduced in both structural arrangements, the maximum

Figure 89. Enhancement factor of (a) a Penrose tiling for different days of the year and local times. The coloured lines indicate different local
times. For these local times, the enhancement factor is plotted in (b) versus the day of the year in the corresponding colours. The same plots
are shown in panels (c) and (d) for the square lattice. The course of the Sun for three different days of the year is shown in the inset of panel
(d). Reproduced from [152] and modified with permission. Copyright 2013 by the Optical Society of America.
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values in the quasicrystalline case are about 15.8, whereas the
maximum values for the square lattice are approximately 15.5.
In the morning and evening hours during wintertime, the
enhancement factor of both structural arrangements is much
lower than 15 since the zenith angle is quite high then.

All in all, a variation of the enhancement factors in
summertime are obtained between 15.8 and 16.2 for the
Penrose tiling as well as between 15.5 and 16.6 for the square
lattice. Except for the morning hours and the late afternoons,
almost constant values between 15.8 and 16.2 are reached for
at least 7.5 months in the quasicrystalline case, whereas these
values are only met for 5.5 months at the most in the periodic
case. Even in the early morning and the late afternoon a
maximum enhancement factor of about 15.8 is reached during
summertime for the Penrose tiling, whereas a maximum value
of only 15.5 is obtained for the square lattice. In comparison
to the square lattice where the enhancement factor around
noon varies between 14.7 and 16.6, the enhancement factor
around noon of the Penrose tiling only changes between 15.1
and 16.1. This means that more constant values are reached
throughout the day as well as the year for the Penrose tiling.

A total enhancement factor EFtot can be calculated by
integrating the average absorption of the enhanced structure
over the local time tlocal as well as over the day of the year tday

and by normalizing that to the same integration of the bare
structure, which is given by

∫ ∫

∫ ∫
=EF

A t t

A t t

d d

d d
. (103)tot

1

365

0

24
avg, enh local day

1

365

0

24
avg, Bare local day

This calculation leads to a value =EF 15.573tot for the qua-
siperiodic as well as to a value =EF 15.515tot for the periodic
structure. This means that, although the enhancement factor
reaches higher values for the square lattice, the total
enhancement factor is slightly higher for the Penrose tiling.
This is due to the more constant values throughout the day
and the year in the quasicrystalline case.

These findings indicate that the performance of a solar
cell with a quasiperiodic metal disc arrangement is more
stable during the day as well as over the year. Especially in
the morning and the evening hours, when more electricity is
needed, the enhancement factor of the Penrose tiling is higher.
Also, the enhancement factor stays longer at constant values
over the year. This is particularly of interest since also more
electricity is needed during wintertime. For thicker silicon
layers, more waveguide modes can be excited leading to a
even higher absorbance for both structural arrangements.
Thus, also the enhancement factor will be increased for both
lattices. However, the enhancement factor should be still
more constant for the Penrose tiling. Additionally, a higher
difference of the total enhancement factor is expected.

6. Conclusion and outlook

The work presented in this PhD tutorial deals with aperiodic
metal gratings on top of a waveguide material. These metallic

photonic crystals possess either a 1D grating or a 2D grating.
The aperiodic gratings in one dimension are either disordered
or arranged on the coordinates of Fibonacci-like sequences or
Cantor sequences. For the aperiodic gratings in two dimen-
sions, the gold discs are placed on the vertices of a Penrose
tiling. All the aperiodic structures are compared to periodic
ones. The samples are fabricated by using electron-beam
lithography that allows a precise positioning of the metal
particles at the desired coordinates.

The metallic photonic crystals in this PhD tutorial can
excite a waveguide mode and also a particle plasmon. For the
structures with a 1D grating, the particle plasmon can only be
excited for a polarization perpendicular to the gold wires.
When these resonances are in the same energy range, they are
coupled to each other leading to a waveguide-plasmon
polariton as presented in former work [31, 32].

First, the optical properties of the 1D disordered struc-
tures are analysed. Two different disorder models are used
(frozen-phonon disorder and long-range disorder) combined
with two different kinds of distributions (uniform distribution
and Gaussian distribution). For all disorder structures, the
average grating period as well as the disorder amount was
varied. It was found that the amplitude of the excited wave-
guide mode decreases for an increased frozen-phonon dis-
order amount. This is due to a less efficient excitation of the
waveguide mode. When the particle plasmon is additionally
excited, the smaller amplitude can also be obtained. However,
this reduced amplitude might be visible as a reduced contrast
between the two peaks and the dip in between. Varying the
grating period just shifts the waveguide mode resonance to
different energy positions. The amplitude decreases faster in
the case of Gaussian distribution when compared to uniform
distribution. For long-range disorder, the amplitude for a
larger disorder amount also decreases. However, also addi-
tional waveguide modes can be excited. All the excited
waveguide modes possess slightly different energies leading
to a broadened resonance. Due to this large number of addi-
tional waveguide modes, the amplitude reduction is faster
when compared to the samples with frozen-phonon disorder.
Again, the waveguide mode amplitudes decrease faster for
Gaussian distribution. All these findings are consistent with
the results of Nau [107].

These disordered samples were fabricated in order to
confirm the behaviour of the coupling strength V2, which is
reduced for an increased disorder amount. For this purpose,
the energy positions of the extinction maxima were plotted
versus the grating period for the different frozen-phonon
disorder amounts. A Hamiltonian (see equation (33)) was
fitted to each of the plots in order to identify the corre-
sponding coupling strength. This was done for both uniform
and Gaussian distribution. By comparing the experimentally
obtained coupling strengths to the calculated ones of [107], a
good agreement is achieved. Therefore, the simple model
used to calculate the coupling strengths is confirmed. How-
ever, due to the large amount of waveguide modes for long-
range disorder, the coupling strengths cannot be experimen-
tally obtained. Therefore, the Urbach energy, as it is known
for disordered structures, is determined for the samples. This
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was done for the frozen-phonon samples first in order to see if
it is possible that the Urbach energy is related to the coupling
strength. It is found that the Urbach energy is strongly
dependent on the grating period and, thus, also on the
polaritonic system. Whereas the coupling strength decreases
for a larger disorder amount, the Urbach energy increases.
However, the coupling strength might be inversely related to
the Urbach energy. By plotting both the coupling energy and
the Urbach slope versus the disorder amount into the same
diagram, it is found that the behaviour is quite similar. The
exact relation is not known yet since the Urbach slope is
different for all grating periods. However, the ratio between
the coupling energy and the inverse Urbach energy is kept
constant for the same grating period. The agreement for both
distributions is quite good. Therefore, the Urbach energies of
the long-range disorder samples were also determined and
compared to the calculated coupling energies. The ratio
between the coupling energy and the Urbach slope is kept
constant for the same grating period. It is found that, also for
this disorder model, the coupling energy shows a similar
behaviour for increasing disorder amounts than the inverse
Urbach energy. This means that the inverse Urbach energy is
somehow related to the coupling strength. However, the
correct relation still has to be found. It also means that the
model for calculating the coupling strengths is valid.

In the next part of this tutorial, the optical properties of
the 1D quasiperiodic structures were analysed. The gold wires
in these structures were placed on the coordinates of Fibo-
nacci-like sequences. It was found that the main waveguide
mode resonance is excited at an energy position corre-
sponding to the average wire distance. The amplitude of the
waveguide mode resonance is dependent on the difference
between the long and the short wire distance. All Fourier
peaks can be explained by using the cut formalism, which is a
method to construct the Fibonacci-like sequences. By using
this approach and by varying the construction parameters, the
Fourier peaks can be tuned to the desired energy position with
the desired amplitude. It is also possible to change the ratio
between different Fourier peaks.

For the last part of the 1D structures, the Cantor and
Cantor-6 samples were fabricated and measured. In contrast
to the Cantor samples, much more waveguide mode can be
excited for the Cantor-6 samples. However, all excited reso-
nances are located around the average wire distance for the
Cantor as well as for the Cantor-6 samples. Additionally, one
of the excited resonances always corresponds to the short wire
distance. For an increased difference between the long wire
distance and the short wire distance, all the peaks are spread
over a larger energy range. However, a detailed analysis of
the Fourier transform could not be found.

Next, the optical properties of the 2D structures were
analysed for normally incident light on the sample. The gold
discs of these samples were elliptically shaped and rotated by
the angle γ around the sample x-axis. The eccentricity and γ
were different for the three samples. In comparison to the 1D
structures, there are some important differences. First, a par-
ticle plasmon can be excited for a polarization along one of
the main axes. For a polarization angle between the directions

of the two main axes, both particle plasmons can be excited,
however with a reduced amplitude of both particle plasmon
resonances. Second, waveguide modes can be excited in all
directions of the x–y plane provided that a Fourier component
exists in that direction. In each of these directions, a TE as
well as a TM polarized wave can be excited depending on the
incident polarization. For linearly polarized light along the
sample x-axis, it is expected that only a TM wave can pro-
pagate in x direction and only a TE wave in y direction.
However, for elliptically shaped particles rotated by the angle
γ around the sample x-axis, also a TE wave propagating in x
direction and a TM wave propagating in y direction are pre-
sent. This can only be explained by the assumption that the
excited particle plasmons along the main axes are able to
excite waveguide modes by themselves.

Based on these findings, a theoretical model was devel-
oped in order to be able to model the optical properties of
such 2D metallic photonic crystals. The directions in which
the waveguide modes propagate are given by the 2D Fourier
transform of the structure coordinates. Not only those wave-
guide modes are considered that are directly excited by the
incident light, but also those waveguide modes that are due to
the particle plasmons along the main axes of the particles.
These plasmon waveguide modes are dependent on the
material as well as on the shape and the size of the particle.
The summation of the different components determines the
weighting factor for a TE or a TM wave propagating in a
specific direction. The waveguide dispersion relations for a
TE as well as a TM wave assign the corresponding energies to
the k values of the Fourier peaks. The amplitudes of the
resonances are dependent on the amplitudes of the Fourier
peaks as well as on the weighting factor. A Fano model is
used to calculate the spectra including all amplitudes and
energies of the resonances present in the specific energy
range. Since the waveguide mode and the particle plasmon
are coupled to each other when they are in the same energy
range, the phase of a waveguide mode changes when it is
shifted through the particle plasmon. If the waveguide mode
has the same energy as the particle plasmon, its phase is
shifted by π when compared to an undisturbed waveguide
mode. Therefore, the phase of the waveguide mode changes
for all waves propagating in the waveguide layer depending
on its energy. With all these considerations, it is possible to
model the optical properties of such 2D systems. This was
done for all samples and a good agreement was achieved
between the measured and the modelled spectra.

The 2D structures were also measured for oblique light
incidence. Depending on the polarization as well as on the
azimuthal and polar angle of the incident light, the waveguide
modes split into several modes. Due to the higher rotational
symmetry of the quasiperiodic structures, the splitting results
in more modes when compared to the periodic structures. In
the normal incidence spectra of the square lattice sample, it
cannot be seen that waveguide modes can be excited by the
electric field vectors of the particle plasmons. However, three
resonances are visible for oblique light incidence while it was
expected to only see one or two resonances. This is again
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proof that the plasmon waveguide modes are present in the
system.

The theoretical model presented for normally incident
light was then expanded for oblique light incidence. The basic
concepts were the same, however, some parts had to be
adjusted. The propagation vectors of the waveguide modes
are now dependent on the vector addition of the wave vector
parallel to the sample surface kxy and the reciprocal lattice
vectors of the structure [32, 81]. One has to keep in mind that
each Fourier component as well as each kxy component is
dependent on the energy of the incident wave leading to a
different kxy value for each Fourier component. Additionally,
the propagation direction of a TE wave differs from that of a
TM wave for the same Fourier component. Due to the oblique
incidence of light, also the weighting factors of the specific
waveguide modes have to be modified. However, after the
amplitudes of the waves and their corresponding energies
have been identified, the optical properties can be modelled
using the same Fano model as for normal incidence. The
comparison between the measured and the modelled spectra
again provides a good agreement.

In the last part of this tutorial, the above presented model
was used to predict the absorption enhancement of plasmonic
solar cells. A silicon solar cell was assumed with either a
quasicrystalline or a periodic arrangement of gold discs on
top. In order to provide reasonable results, the transmittance
and reflectance spectra of the periodic structure was first
calculated for normal incidence by using an S-matrix
approach. The Fano modelled spectra were then fit to the
corresponding S-matrix spectra in order to obtain reasonable
fitting parameters. Due to the more isotropic band structure of
the solar cell with the quasiperiodic tiling, it was found that
the absorption enhancement is more constant throughout the
day as well as over the year when compared to the periodic
tiling. Also the total enhancement factor was slightly higher in
the quasiperiodic case.

Based on the results of this PhD tutorial, interesting
future tasks can be studied. The investigations of the 1D
disordered samples showed a connection between the Urbach
energy and the coupling constant. It was found that the
Urbach energy is strongly dependent on the grating period of
the metallic photonic crystal. However, the correct relation
between the two parameters is not known up to now.

It was predicted in this tutorial that plasmonic solar cells
possessing a quasiperiodic arrangement of the metal discs
provide a more constant absorption enhancement throughout
the day and over the year when compared to periodic struc-
tures. However, such solar cells have to be fabricated in order
to verify the predictions. Furthermore, this solar cell design
has not been optimized so far. Changing the solar cell para-
meters could lead to an improved absorption of the incident
light. It might be also advantageous to place the metal discs
underneath the silicon layer. An anti-reflection layer on top
was also not considered in the presented solar cell design. The
efficiency of these solar cells should also be compared to the
efficiency of a solar cell with a totally disordered metal disc
arrangement. For this purpose it would be also interesting to

understand the behaviour of 2D frozen-phonon disordered
metallic photonic crystals. A detailed study of different dis-
order amounts should be made. The disorder should not only
be changed in the x direction as has been done in [81], but
should be allowed to vary in all directions.

Another research area related to plasmonic solar cells is
LEDs. It is also possible to use a quasicrystalline arrangement
to improve light extraction efficiency. These structures could
be studied in future research as well.
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