Physical Optics

Research Group in Theoretical and Computational Physics

Junior Research Group “Physical Optics”

Duration: 1:34 | © Universität Stuttgart/PI4 | Source: YouTube
Group members (from left to right): Sascha Böhrkircher, M.Sc., Steffen Both, M.Sc., Josselin Defrance, M.Sc., Swaathi Upendar, M.Sc., Apl. Prof. Dr. Thomas Weiss, Izzatjon Allayarov, M.Sc.

The Physical Optics Group is moving to the University of Graz. We offer several new positions. For further information, please take a look at the homepage or contact Prof. Thomas Weiss (


The junior research group “Physical Optics” has been established at the University of Stuttgart in order to bridge the gaps between physicists and engineers as well as experimental and theoretical physics. It is part of the Research Center SCoPE, where several institutes of the physics and engineering departments collaborate in highly active research areas of optics and quantum technologies. The research activites include nanooptics, plasmonics, photonic crystal fibers, display technologies, solar cells, quantum optics, and a lot more.

Research Interests

The focus of the junior research group "Physical Optics" is on the theoretical and numerical calculations for investigating the optical properties of micro and nanostructures. This includes design optimization, development of advanced numerical methods as well as gaining a deeper insight by semi-analytical approaches. For the latter, we are using coupled-oscillator models as well as the resonant state expansion, where the resonant states of a given system are used as the basis for describing its optical response. A strong emphasis lies on chiral and non-reciprocal plasmonics as well as hybrid systems combining photonic and quantum technologies, particularly plasmonic systems and quantum emitters such as strongly interacting atoms, molecules, and quantum dots.


Our numerical expertise is based on in-house numerical tools such as Fourier modal method with adaptive coordinates, split-step Fourier method, resonant state expansion, and beam propagation method, as well as on commercial finite element and finite difference time domain software.


We strongly collaborate with experimental physicists and engineers, making this group very attractive for young researches, as new ideas and designs developed in this group can be directly applied in the experiment. For our large variety of topics, we are always looking for strong candidates who are interested in theoretical physics and numerical methods.

Selected publications
  • On the pole expansion of electromagnetic fields
    J. Defrance and T. Weiss
    Optics Express 28, 32363 (2020).
    This paper was selected as editor's pick.
  • DNA-assembled nanoarchitectures with multiple components in regulated and coordinated motion
    P. Zhan, M. J. Urban, S. Both, X. Duan, A. Kuzyk, T. Weiss, and N. Liu
    Science Advances 5, eaax6023 (2019).
  • First-order perturbation theory for changes in the surrounding of open optical resonators
    S. Both and T. Weiss
    Opt. Lett. 44, 5917 (2019).
  • Analytic mode normalization for the Kerr nonlinearity parameter: Prediction of nonlinear gain for leaky modes
    I. Allayarov, S. Upendar, M. A. Schmidt, and T. Weiss
    Phys. Rev. Lett. 121, 213905 (2018).
  • Analytical mode normalization and resonant state expansion for bound and leaky modes in optical fibers - an efficient tool to model transverse disorder
    S. Upendar, I. Allayarov, M. A. Schmidt, and T. Weiss
    Opt. Exp. 26, 22536 (2018).
  • Gold nanocrystal-mediated sliding of doublet DNA origami filaments
    M. J. Urban, S. Both, C. Zhou, A. Kuzyk, K. Lindfors, T. Weiss, and N. Liu
    Nat. Commun. 9, 1454 (2018).
  • Modeling of second-harmonic generation in periodic nanostructures by the Fourier modal method with matched coordinates
    J. Defrance, M. Schäferling, and T. Weiss
    Opt. Exp. 26, 13746 (2018).
  • How to calculate the pole expansion of the optical scattering matrix from the resonant states
    T. Weiss and E. A. Muljarov
    Phys. Rev. B 98, 085433 (2018).
  • Resonant-state expansion for open optical systems: Generalization to magnetic, chiral, and bi-anisotropic materials
    E. A. Muljarov, and T. Weiss
    Opt. Lett. 43, 1978 (2018).
  • Line-current model for linear and nonlinear optical properties of thin elongated metallic rod antennas
    M. Nesterov, M. Schäferling, K. Weber, F. Neubrech, H. Giessen, and T. Weiss
    J. Opt. Soc. Am. B 35, 1482 (2018).
  • Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas - Utilization of Optimal Spectral Detuning of Fano Resonances
    M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. Hedge, and H. Giessen
    ACS Sensors 3, 960 (2018).
  • Analytical Normalization of Resonant States in Photonic Crystal Slabs and Periodic Arrays of Nanoantennas at Oblique Incidence
    T. Weiss, M. Schäferling, H. Giessen, N. A. Gippius, S. G. Tikhodeev, W. Langbein, and E. A. Muljarov
    Phys. Rev. B 96, 045129 (2017).
  • Lorentz Nonreciprocal Model for Hybrid Magnetoplasmonics
    D. Floess, T. Weiss, S. G. Tikhodeev, and H. Giessen
    Phys. Rev. Lett. 117, 063901 (2016).
  • The role of plasmon-generated near-fields for enhanced circular dichroism spectroscopy
    M. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss
    ACS Photonics 3, 578 (2016).
  • Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration
    M. Schäferling, N. Engheta, H. Giessen, and T. Weiss
    ACS Photonics 3, 1076 (2016).
  • From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing
    T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov
    Phys. Rev. Lett. 116, 237401 (2016).
  • Matched coordinates and adaptive spatial resolution in the Fourier modal method
    T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen
    Optics Express 17, 8051 (2009).
This image shows Thomas Weiss

Thomas Weiss

Prof. Dr.

Leader of the Research Group "Physical Optics" (University of Stuttgart) and "Theoretical Nanophysics" (University of Graz)

To the top of the page